【STM32-HAL库】一步步搭建出FOC矢量控制(附C代码)

说明

本文为无刷电机或PMSM电机驱动的简易代码,旨在分享一些个人调试过程的小心得,提供一个demo文件,程序仍有许多不完善的地方,建立起个人的FOC底层驱动,可以帮助快速熟悉FOC算法原理与使用方法,可以帮助验证新的电机控制算法。原理部分不再阐述。
整个部分共有PWM模块、ADC电流采集、定时器编码器配置、SVPWM模块、FOC核心、PID模块、电压限幅模块,其实有了PWM与SVPWM以及一些必要的数学变换,我们就可以开环使电机转起来了,加入电角度与电流采集作为反馈后,我们就能做到电流闭环,再加入速度PID就可以做到速度闭环,其他的模块只是这些目的的辅助手段罢了。

注意:
调试一定要注意安全!!!
使用带有保护的电源,调试时一定要限制电流在安全等级,开关放手边,随时断电!

硬件相关:
(1)MCU为STM32F405RGT6
(2)引脚分配
PWM:TIM1–PA8、PA9、PA10、PB13、PB14、PB15
电流采样:IA–PA6、IB–PA7、IC–PC4
编码器: EA–PA0、EB–PA1
串口: PB6、PB7
(3)编码器为1250线,电机为PMSM、4対极
软件相关:
STM32CubeMX、Keil

如果自制硬件可参考:迷你FOC驱动器

参考资料:
(1)ST电机库
(2)PMSM的FOC 矢量控制算法调试流程,新手上手流程
(3)PMSM矢量控制算法调试流程
(4)FOC和SVPWM的C语言代码实现
(5)上官致远–深入理解无刷直流电机矢量控制技术–科学出版社

0、系统配置

将下列值加入到Cube的User Constants下,然后按照下面的图配置好基本外设。

#define CKTIM 168000000//定时器时钟频率
#define PWM_PRSC 0
#define PWM_FREQ 15000//PWM频率
#define PWM_PERIOD CKTIM/(2*PWM_FREQ*(PWM_PRSC+1))
#define REP_RATE 1 //电流环刷新频率为(REP_RATE+1)/(2*PWM_FREQ)
#define DEADTIME_NS 1000//死区时间ns
#define DEADTIME CKTIM/1000000/2*DEADTIME_NS/1000
#define POLE_PAIR_NUM 4//极对数
#define ENCODER_PPR 1250//编码器线数
#define ALIGNMENT_ANGLE 300
#define COUNTER_RESET (ALIGNMENT_ANGLE*4*ENCODER_PPR/360-1)/POLE_PAIR_NUM
#define ICx_FILTER 8

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1、电机有力了!(PWM模块)

高级定时器主要用于产生6路互补的PWM来驱动MOS管,加入死区防止电源导通,本文未使用刹车引脚。高级定时器1通道1、2、3用于产生PWM,通道4用于触发ADC电流采样,根据扇区的位置,灵活设置PWM占空比,进而选择合理的触发点,避免在噪声点采样。引脚配置与PWM极性请根据自己的硬件合理配置,如IR2101是高电平有效,而IR2103则是低端低有效,高端高有效。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

PWM测试

生成工程后,应首先对PWM模块进行测试,如果有示波器,先测试PWM是否正常(安全起见一路路测试),死区时间是否正确,然后主函数中加入下列代码,导通U相,注意:占空比一定不能设置的过大,防止电流过大,烧毁电机与驱动板。同理可测试其它相。测试完成后进入下一项。
当然,也可以通过这种方法知道你电机的极对数,导通一相后,用手转动电机一圈,感到有几次阻力,就是几对极。或者,不使用驱控板,先用万用表测试电机任意两相间的电阻,然后通合适的电压,如电阻为2欧,则可以通1V电压,然后用手转动电机一圈,感到有几次阻力,就是几对极。

  /* USER CODE BEGIN 2 */
  //此时电机应该是有阻力的
	HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_1);
	HAL_TIMEx_PWMN_Start(&htim1,TIM_CHANNEL_2);
    __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1,400);//不能设置的过大
	__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2,5600);//5600为最大占空比
  /* USER CODE END 2 */

不加驱动板时50%占空比波形与1000ns死区
在这里插入图片描述
在这里插入图片描述

2、让电机转起来吧!(SVPWM)

在主函数头文件main.h中加入下面定义,这在后面都会用到。

typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef int8_t s8;
typedef int16_t s16;
typedef int32_t s32;
typedef __IO uint32_t  vu32;
typedef __IO uint16_t vu16;
typedef __IO uint8_t  vu8;

#define U8_MAX     ((u8)255)
#define S8_MAX     ((s8)127)
#define S8_MIN     ((s8)-128)
#define U16_MAX    ((u16)65535u)
#define S16_MAX    ((s16)32767)
#define S16_MIN    ((s16)-32768)
#define U32_MAX    ((u32)4294967295uL)
#define S32_MAX    ((s32)2147483647)
#define S32_MIN    ((s32)-2147483648)

加入下面代码,主要是数学变换中的Clark变换、Park变换、反Park变换,以及SVPWM模块。


//结构体定义
typedef struct 
{
  s16 qI_Component1;
  s16 qI_Component2;
} Curr_Components;


typedef struct 
{
  s16 qV_Component1;
  s16 qV_Component2;
} Volt_Components;

typedef struct     //电压值结构体
{
  s16 hCos;
  s16 hSin;
} Trig_Components;  //存放角度sin和cos函数值的结构体

typedef struct
{
    s16 hKp_Gain;			   //比例系数
    u16 hKp_Divisor;		   //比例系数因子
    s16 hKi_Gain;		       //积分系数
    u16 hKi_Divisor;  	       //积分系数因子
    s16 hLower_Limit_Output;   //总输出下限
    s16 hUpper_Limit_Output;   //总输出上限
    s32 wLower_Limit_Integral; //积分项下限
    s32 wUpper_Limit_Integral; //积分项上限
    s32 wIntegral;			   //积分累积和
    s16 hKd_Gain;			   //微分系数
    u16 hKd_Divisor;		   //微分系数因子
    s32 wPreviousError;	       //上次误差
} PID_Struct_t;
 




//数学变换部分
#define S16_MAX    ((s16)32767)
#define S16_MIN    ((s16)-32768)
#define divSQRT_3	(s16)0x49E6      //1/sqrt(3)的Q15格式,1/sqrt(3)*2^15=18918=0x49E6 
#define SIN_MASK  0x0300
#define U0_90     0x0200
#define U90_180   0x0300
#define U180_270  0x0000
#define U270_360  0x0100
#define SQRT_3		1.732051
#define T		    (PWM_PERIOD * 4)
#define T_SQRT3     (u16)(T * SQRT_3)
//SVPWM部分
#define SECTOR_1	(u32)1
#define SECTOR_2	(u32)2
#define SECTOR_3	(u32)3
#define SECTOR_4	(u32)4
#define SECTOR_5	(u32)5
#define SECTOR_6	(u32)6
#define PWM2_MODE 0
#define PWM1_MODE 1
#define TW_AFTER ((u16)(((DEADTIME_NS+MAX_TNTR_NS)*168uL)/1000ul))
#define TW_BEFORE (((u16)(((((u16)(SAMPLING_TIME_NS)))*168uL)/1000ul))+1)
#define TNOISE_NS 1550     //2.55usec
#define TRISE_NS 1550     //2.55usec
#define SAMPLING_TIME_NS   700  //700ns
#define SAMPLING_TIME (u16)(((u16)(SAMPLING_TIME_NS) * 168uL)/1000uL) 
#define TNOISE (u16)((((u16)(TNOISE_NS)) * 168uL)/1000uL)
#define TRISE (u16)((((u16)(TRISE_NS)) * 168uL)/1000uL)
#define TDEAD (u16)((DEADTIME_NS * 168uL)/1000uL)

#if (TNOISE_NS > TRISE_NS)
  #define MAX_TNTR_NS TNOISE_NS
#else
  #define MAX_TNTR_NS TRISE_NS
#endif

//函数声明

//数学变换
Curr_Components Clarke(Curr_Components Curr_Input);
Trig_Components Trig_Functions(s16 hAngle);
Curr_Components Park(Curr_Components Curr_Input, s16 Theta);
Volt_Components Rev_Park(Volt_Components Volt_Input);
//SVPWM
void SVPWM_3ShuntCalcDutyCycles (Volt_Components Stat_Volt_Input);
//FOC核心
void FOC_Model(void);
//系统初始化
void motor_init(void);

//变量定义部分
Trig_Components Vector_Components;
u8 bSector;
u8 PWM4Direction=PWM2_MODE;
s16 cnt = S16_MIN;//开环调试变量

//FOC相关
Trig_Components Vector_Components;
Curr_Components Stat_Curr_a_b;            
Curr_Components Stat_Curr_alfa_beta;       
Curr_Components Stat_Curr_q_d;             
Curr_Components Stat_Curr_q_d_ref_ref;   //电流环的给定值,用于电流环Id,Iq和前馈电流控制的给定值
Volt_Components Stat_Volt_q_d;             
Volt_Components Stat_Volt_alfa_beta; 
PID_Struct_t PID_Torque_InitStructure;
PID_Struct_t PID_Flux_InitStructure;
PID_Struct_t PID_Speed_InitStructure;

void motor_init(void)
{
	//PWM初始化
	HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_1);
	HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_2);
	HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_3);
	HAL_TIMEx_PWMN_Start(&htim1,TIM_CHANNEL_1);
	HAL_TIMEx_PWMN_Start(&htim1,TIM_CHANNEL_2);
	HAL_TIMEx_PWMN_Start(&htim1,TIM_CHANNEL_3);
  __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1,0);
	__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2,0);
	__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3,0);
  //通道4触发ADC采样
	HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_4);
	__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_4,1000);//初始占空比应该多少?
//	//开启ADC注入转换
//	HAL_ADCEx_InjectedStart_IT(&hadc1);
//	//使能ABZ编码器
//	HAL_TIM_Encoder_Start_IT(&htim2,TIM_CHANNEL_ALL);
//  HAL_TIM_Base_Start_IT(&htim2);
//	//初始化PID控制器
//	PID_Init(&PID_Torque_InitStructure,&PID_Flux_InitStructure,&PID_Speed_InitStructure);
  
//	State = START;
}

void FOC_Model(void)	  //电流环处理函数
{
//	Stat_Curr_a_b = SVPWM_3ShuntGetPhaseCurrentValues();			//读取2相的电流值
//	Stat_Curr_alfa_beta = Clarke(Stat_Curr_a_b);	//Ia,Ib通过Clark变换得到Ialpha和Ibeta  
//	Stat_Curr_q_d = Park( Stat_Curr_alfa_beta,ENC_Get_Electrical_Angle());  //输入电角度、Ialpha和Ibeta,经过Park变换得到Iq、Id							
//	Stat_Volt_q_d.qV_Component1 = PID_Regulator(hTorque_Reference,Stat_Curr_q_d.qI_Component1, &PID_Torque_InitStructure);
//	Stat_Volt_q_d.qV_Component2 = PID_Regulator(hFlux_Reference,Stat_Curr_q_d.qI_Component2, &PID_Flux_InitStructure);  	
//	RevPark_Circle_Limitation();  	//归一化
	
	
	//开环调试
	Stat_Volt_q_d.qV_Component1 = 0;
	Stat_Volt_q_d.qV_Component2 = 3000;
	cnt+=500;
	if(cnt>S16_MAX)
		cnt=S16_MIN;
	Vector_Components = Trig_Functions(cnt);
	Stat_Volt_alfa_beta = Rev_Park(Stat_Volt_q_d);    //反Park变换
	SVPWM_3ShuntCalcDutyCycles(Stat_Volt_alfa_beta);  //svpwm实现函数,实际的电流输出控制	
}




//SVPWM
void SVPWM_3ShuntCalcDutyCycles (Volt_Components Stat_Volt_Input)
{
   s32 wX, wY, wZ, wUAlpha, wUBeta;
   u16  hTimePhA=0, hTimePhB=0, hTimePhC=0, hTimePhD=0;
   u16  hDeltaDuty;
    
   wUAlpha = Stat_Volt_Input.qV_Component1 * T_SQRT3 ;
   wUBeta = -(Stat_Volt_Input.qV_Component2 * T);

   wX = wUBeta;
   wY = (wUBeta + wUAlpha)/2;
   wZ = (wUBeta - wUAlpha)/2;
   
  // Sector calculation from wX, wY, wZ
   if (wY<0)
   {
      if (wZ<0)
      {
        bSector = SECTOR_5;
      }
      else // wZ >= 0
        if (wX<=0)
        {
          bSector = SECTOR_4;
        }
        else // wX > 0
        {
          bSector = SECTOR_3;
        }
   }
   else // wY > 0
   {
     if (wZ>=0)
     {
       bSector = SECTOR_2;
     }
     else // wZ < 0
       if (wX<=0)
       {  
         bSector = SECTOR_6;
       }
       else // wX > 0
       {
         bSector = SECTOR_1;
       }
    }
   
   /* Duty cycles computation */
  PWM4Direction=PWM2_MODE;
    
  switch(bSector)
  {  
    case SECTOR_1:
                hTimePhA = (T/8) + ((((T + wX) - wZ)/2)/131072);
				hTimePhB = hTimePhA + wZ/131072;
				hTimePhC = hTimePhB - wX/131072;
                
                // ADC Syncronization setting value             
                if ((u16)(PWM_PERIOD-hTimePhA) > TW_AFTER)
                {
                  hTimePhD = PWM_PERIOD - 1;
                }
                else
                {
                  hDeltaDuty = (u16)(hTimePhA - hTimePhB);
                  
				  // Definition of crossing point
                  if (hDeltaDuty > (u16)(PWM_PERIOD-hTimePhA)*2) 
                  {
                      hTimePhD = hTimePhA - TW_BEFORE; // Ts before Phase A 
                  }
                  else
                  {
                      hTimePhD = hTimePhA + TW_AFTER; // DT + Tn after Phase A
                     
                    if (hTimePhD >= PWM_PERIOD)
                    {
                      // Trigger of ADC at Falling Edge PWM4
                      // OCR update
                      
                      //Set Polarity of CC4 Low
                      PWM4Direction=PWM1_MODE;
                      
                      hTimePhD = (2 * PWM_PERIOD) - hTimePhD-1;
                    }
                  }
                }
                            
                break;
    case SECTOR_2:
                hTimePhA = (T/8) + ((((T + wY) - wZ)/2)/131072);
				hTimePhB = hTimePhA + wZ/131072;
				hTimePhC = hTimePhA - wY/131072;
                
                // ADC Syncronization setting value
                if ((u16)(PWM_PERIOD-hTimePhB) > TW_AFTER)
                {
                  hTimePhD = PWM_PERIOD - 1;
                }
                else
                {
                  hDeltaDuty = (u16)(hTimePhB - hTimePhA);
                  
                  // Definition of crossing point
                  if (hDeltaDuty > (u16)(PWM_PERIOD-hTimePhB)*2) 
                  {
                    hTimePhD = hTimePhB - TW_BEFORE; // Ts before Phase B 
                  }
                  else
                  {
                    hTimePhD = hTimePhB + TW_AFTER; // DT + Tn after Phase B
                    
                    if (hTimePhD >= PWM_PERIOD)
                    {
                      // Trigger of ADC at Falling Edge PWM4
                      // OCR update
                      
                      //Set Polarity of CC4 Low
                      PWM4Direction=PWM1_MODE;
                      
                      hTimePhD = (2 * PWM_PERIOD) - hTimePhD-1;
                    }
                  }
                }
                
                break;

    case SECTOR_3:
                hTimePhA = (T/8) + ((((T - wX) + wY)/2)/131072);
				        hTimePhC = hTimePhA - wY/131072;
                hTimePhB = hTimePhC + wX/131072;
		
                // ADC Syncronization setting value
                if ((u16)(PWM_PERIOD-hTimePhB) > TW_AFTER)
                {
                  hTimePhD = PWM_PERIOD - 1;
                }
                else
                {
                  hDeltaDuty = (u16)(hTimePhB - hTimePhC);
                  
                  // Definition of crossing point
                  if (hDeltaDuty > (u16)(PWM_PERIOD-hTimePhB)*2) 
                  {
                    hTimePhD = hTimePhB - TW_BEFORE; // Ts before Phase B 
                  }
                  else
                  {
                    hTimePhD = hTimePhB + TW_AFTER; // DT + Tn after Phase B
                    
                    if (hTimePhD >= PWM_PERIOD)
                    {
                      // Trigger of ADC at Falling Edge PWM4
                      // OCR update
                      
                      //Set Polarity of CC4 Low
                      PWM4Direction=PWM1_MODE;
                      
                      hTimePhD = (2 * PWM_PERIOD) - hTimePhD-1;
                    }
                  }
                }
                break;
    
    case SECTOR_4:
                hTimePhA = (T/8) + ((((T + wX) - wZ)/2)/131072);
                hTimePhB = hTimePhA + wZ/131072;
                hTimePhC = hTimePhB - wX/131072;
                
                // ADC Syncronization setting value
                if ((u16)(PWM_PERIOD-hTimePhC) > TW_AFTER)
                {
                  hTimePhD = PWM_PERIOD - 1;
                }
                else
                {
                  hDeltaDuty = (u16)(hTimePhC - hTimePhB);
                  
                  // Definition of crossing point
                  if (hDeltaDuty > (u16)(PWM_PERIOD-hTimePhC)*2)
                  {
                    hTimePhD = hTimePhC - TW_BEFORE; // Ts before Phase C 
                  }
                  else
                  {
                    hTimePhD = hTimePhC + TW_AFTER; // DT + Tn after Phase C
                    
                    if (hTimePhD >= PWM_PERIOD)
                    {
                      // Trigger of ADC at Falling Edge PWM4
                      // OCR update
                      
                      //Set Polarity of CC4 Low
                      PWM4Direction=PWM1_MODE;
                      
                      hTimePhD = (2 * PWM_PERIOD) - hTimePhD-1;
                    }
                  }
                }
                break;  
    
    case SECTOR_5:
                hTimePhA = (T/8) + ((((T + wY) - wZ)/2)/131072);
				hTimePhB = hTimePhA + wZ/131072;
				hTimePhC = hTimePhA - wY/131072;
                
                // ADC Syncronization setting value
                if ((u16)(PWM_PERIOD-hTimePhC) > TW_AFTER)
                {
                  hTimePhD = PWM_PERIOD - 1;
                }
                else
                {
                  hDeltaDuty = (u16)(hTimePhC - hTimePhA);
                  
                  // Definition of crossing point
                  if (hDeltaDuty > (u16)(PWM_PERIOD-hTimePhC)*2) 
                  {
                    hTimePhD = hTimePhC - TW_BEFORE; // Ts before Phase C 
                  }
                  else
                  {
                    hTimePhD = hTimePhC + TW_AFTER; // DT + Tn after Phase C
                    
                    if (hTimePhD >= PWM_PERIOD)
                    {
                      // Trigger of ADC at Falling Edge PWM4
                      // OCR update
                      
                      //Set Polarity of CC4 Low
                      PWM4Direction=PWM1_MODE;
                      
                      hTimePhD = (2 * PWM_PERIOD) - hTimePhD-1;
                    }
                  }
                }

		break;
                
    case SECTOR_6:
                hTimePhA = (T/8) + ((((T - wX) + wY)/2)/131072);
				hTimePhC = hTimePhA - wY/131072;
				hTimePhB = hTimePhC + wX/131072;
                
                // ADC Syncronization setting value
                if ((u16)(PWM_PERIOD-hTimePhA) > TW_AFTER)
                {
                  hTimePhD = PWM_PERIOD - 1;
                }
                else
                {
                  hDeltaDuty = (u16)(hTimePhA - hTimePhC);
                  
                  // Definition of crossing point
                  if (hDeltaDuty > (u16)(PWM_PERIOD-hTimePhA)*2) 
                  {
                    hTimePhD = hTimePhA - TW_BEFORE; // Ts before Phase A 
                  }
                  else
                  {
                    hTimePhD = hTimePhA + TW_AFTER; // DT + Tn after Phase A
                    
                    if (hTimePhD >= PWM_PERIOD)
                    {
                      // Trigger of ADC at Falling Edge PWM4
                      // OCR update
                      
                      //Set Polarity of CC4 Low
                      PWM4Direction=PWM1_MODE;
                      
                      hTimePhD = (2 * PWM_PERIOD) - hTimePhD-1;
                    }
                  }
                }

                break;
    default:
		break;
   }
  
  if (PWM4Direction == PWM2_MODE)
  {
    //Set Polarity of CC4 High
    TIM1->CCER &= 0xDFFF;    
  }
  else
  {
    //Set Polarity of CC4 Low
    TIM1->CCER |= 0x2000;
  }
  
  /* Load compare registers values */ 
	__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_1,hTimePhA);
	__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2,hTimePhB);
	__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_3,hTimePhC);
	__HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_4,hTimePhD);
}

//数学函数
const s16 hSin_Cos_Table[256] = {\
0x0000,0x00C9,0x0192,0x025B,0x0324,0x03ED,0x04B6,0x057F,\
0x0648,0x0711,0x07D9,0x08A2,0x096A,0x0A33,0x0AFB,0x0BC4,\
0x0C8C,0x0D54,0x0E1C,0x0EE3,0x0FAB,0x1072,0x113A,0x1201,\
0x12C8,0x138F,0x1455,0x151C,0x15E2,0x16A8,0x176E,0x1833,\
0x18F9,0x19BE,0x1A82,0x1B47,0x1C0B,0x1CCF,0x1D93,0x1E57,\
0x1F1A,0x1FDD,0x209F,0x2161,0x2223,0x22E5,0x23A6,0x2467,\
0x2528,0x25E8,0x26A8,0x2767,0x2826,0x28E5,0x29A3,0x2A61,\
0x2B1F,0x2BDC,0x2C99,0x2D55,0x2E11,0x2ECC,0x2F87,0x3041,\
0x30FB,0x31B5,0x326E,0x3326,0x33DF,0x3496,0x354D,0x3604,\
0x36BA,0x376F,0x3824,0x38D9,0x398C,0x3A40,0x3AF2,0x3BA5,\
0x3C56,0x3D07,0x3DB8,0x3E68,0x3F17,0x3FC5,0x4073,0x4121,\
0x41CE,0x427A,0x4325,0x43D0,0x447A,0x4524,0x45CD,0x4675,\
0x471C,0x47C3,0x4869,0x490F,0x49B4,0x4A58,0x4AFB,0x4B9D,\
0x4C3F,0x4CE0,0x4D81,0x4E20,0x4EBF,0x4F5D,0x4FFB,0x5097,\
0x5133,0x51CE,0x5268,0x5302,0x539B,0x5432,0x54C9,0x5560,\
0x55F5,0x568A,0x571D,0x57B0,0x5842,0x58D3,0x5964,0x59F3,\
0x5A82,0x5B0F,0x5B9C,0x5C28,0x5CB3,0x5D3E,0x5DC7,0x5E4F,\
0x5ED7,0x5F5D,0x5FE3,0x6068,0x60EB,0x616E,0x61F0,0x6271,\
0x62F1,0x6370,0x63EE,0x646C,0x64E8,0x6563,0x65DD,0x6656,\
0x66CF,0x6746,0x67BC,0x6832,0x68A6,0x6919,0x698B,0x69FD,\
0x6A6D,0x6ADC,0x6B4A,0x6BB7,0x6C23,0x6C8E,0x6CF8,0x6D61,\
0x6DC9,0x6E30,0x6E96,0x6EFB,0x6F5E,0x6FC1,0x7022,0x7083,\
0x70E2,0x7140,0x719D,0x71F9,0x7254,0x72AE,0x7307,0x735E,\
0x73B5,0x740A,0x745F,0x74B2,0x7504,0x7555,0x75A5,0x75F3,\
0x7641,0x768D,0x76D8,0x7722,0x776B,0x77B3,0x77FA,0x783F,\
0x7884,0x78C7,0x7909,0x794A,0x7989,0x79C8,0x7A05,0x7A41,\
0x7A7C,0x7AB6,0x7AEE,0x7B26,0x7B5C,0x7B91,0x7BC5,0x7BF8,\
0x7C29,0x7C59,0x7C88,0x7CB6,0x7CE3,0x7D0E,0x7D39,0x7D62,\
0x7D89,0x7DB0,0x7DD5,0x7DFA,0x7E1D,0x7E3E,0x7E5F,0x7E7E,\
0x7E9C,0x7EB9,0x7ED5,0x7EEF,0x7F09,0x7F21,0x7F37,0x7F4D,\
0x7F61,0x7F74,0x7F86,0x7F97,0x7FA6,0x7FB4,0x7FC1,0x7FCD,\
0x7FD8,0x7FE1,0x7FE9,0x7FF0,0x7FF5,0x7FF9,0x7FFD,0x7FFE};



Curr_Components Clarke(Curr_Components Curr_Input)         
{
  Curr_Components Curr_Output; 
  s32 qIa_divSQRT3_tmp;
  s32 qIb_divSQRT3_tmp;    //定义32位有符号数,用来暂存Q30格式  
  s16 qIa_divSQRT3;
  s16 qIb_divSQRT3 ;
 
  Curr_Output.qI_Component1 = Curr_Input.qI_Component1;     //Ialpha = Ia
 
  qIa_divSQRT3_tmp = divSQRT_3 * Curr_Input.qI_Component1;  //计算Ia/√3
  qIa_divSQRT3_tmp /=32768;                                 //两个Q15数相乘,会变成Q30,因此要右移15位,变回Q15	    
  qIb_divSQRT3_tmp = divSQRT_3 * Curr_Input.qI_Component2;  //计算Ib/√3
  qIb_divSQRT3_tmp /=32768;
  
  qIa_divSQRT3=((s16)(qIa_divSQRT3_tmp));	                //s32赋值给s16	 		
  qIb_divSQRT3=((s16)(qIb_divSQRT3_tmp));				
     
  Curr_Output.qI_Component2=(-(qIa_divSQRT3)-(qIb_divSQRT3)-(qIb_divSQRT3));  //Ibeta = -(2*Ib+Ia)/sqrt(3) 
  return(Curr_Output); 
}
 
	
/*******************************************************************************
* Function Name  : Trig_Functions 
* Description    : 本函数返回输入角度的cos和sin函数值
* Input          : angle in s16 format
* Output         : Cosine and Sine in s16 format
*******************************************************************************/
Trig_Components Trig_Functions(s16 hAngle)  //hAngle=0,转子电角度=0度。hAngle=S16_MAX,转子电角度=180度。hAngle=S16_MIN,转子电角度=-180度
{
  u16 hindex;
  Trig_Components Local_Components;
  
  /* 10 bit index computation  */  
  hindex = (u16)(hAngle + 32768);  
  hindex /= 64;      
  
  switch (hindex & SIN_MASK) 
  {
  case U0_90:
    Local_Components.hSin = hSin_Cos_Table[(u8)(hindex)];
    Local_Components.hCos = hSin_Cos_Table[(u8)(0xFF-(u8)(hindex))];
    break;
  
  case U90_180:  
     Local_Components.hSin = hSin_Cos_Table[(u8)(0xFF-(u8)(hindex))];
     Local_Components.hCos = -hSin_Cos_Table[(u8)(hindex)];
    break;
  
  case U180_270:
     Local_Components.hSin = -hSin_Cos_Table[(u8)(hindex)];
     Local_Components.hCos = -hSin_Cos_Table[(u8)(0xFF-(u8)(hindex))];
    break;
  
  case U270_360:
     Local_Components.hSin =  -hSin_Cos_Table[(u8)(0xFF-(u8)(hindex))];
     Local_Components.hCos =  hSin_Cos_Table[(u8)(hindex)]; 
    break;
  default:
    break;
  }
  return (Local_Components);
}
 

/**********************************************************************************************************
Park变换,输入电角度、Ialpha和Ibeta,经过Park变换得到Iq、Id
**********************************************************************************************************/ 
Curr_Components Park(Curr_Components Curr_Input, s16 Theta)       
{ 
  Curr_Components Curr_Output;
  s32 qId_tmp_1, qId_tmp_2;
  s32 qIq_tmp_1, qIq_tmp_2;     
  s16 qId_1, qId_2;  
  s16 qIq_1, qIq_2;  
  
  Vector_Components = Trig_Functions(Theta);                      //计算电角度的cos和sin
  
  qIq_tmp_1 = Curr_Input.qI_Component1 * Vector_Components.hCos;  //计算Ialpha*cosθ	
  qIq_tmp_1 /= 32768;
  qIq_tmp_2 = Curr_Input.qI_Component2 *Vector_Components.hSin;   //计算Ibeta*sinθ
  qIq_tmp_2 /= 32768;
 
  qIq_1 = ((s16)(qIq_tmp_1));
  qIq_2 = ((s16)(qIq_tmp_2));
  Curr_Output.qI_Component1 = ((qIq_1)-(qIq_2));	//Iq=Ialpha*cosθ- Ibeta*sinθ
  
  qId_tmp_1 = Curr_Input.qI_Component1 * Vector_Components.hSin;  //计算Ialpha*sinθ
  qId_tmp_1 /= 32768;
  qId_tmp_2 = Curr_Input.qI_Component2 * Vector_Components.hCos;  //计算Ibeta*cosθ
  qId_tmp_2 /= 32768;
  
  qId_1 = (s16)(qId_tmp_1);		 
  qId_2 = (s16)(qId_tmp_2);					
  Curr_Output.qI_Component2 = ((qId_1)+(qId_2));   //Id=Ialpha*sinθ+ Ibeta*cosθ
  
  return (Curr_Output);
}
 
/**********************************************************************************************************
反park变换,输入Uq、Ud得到Ualpha、Ubeta
**********************************************************************************************************/ 
Volt_Components Rev_Park(Volt_Components Volt_Input)
{ 	
  s32 qValpha_tmp1,qValpha_tmp2,qVbeta_tmp1,qVbeta_tmp2;
  s16 qValpha_1,qValpha_2,qVbeta_1,qVbeta_2;
  Volt_Components Volt_Output;
   
  qValpha_tmp1 = Volt_Input.qV_Component1 * Vector_Components.hCos;  //Uq*cosθ
  qValpha_tmp1 /= 32768; 
  qValpha_tmp2 = Volt_Input.qV_Component2 * Vector_Components.hSin;  //Ud*sinθ
  qValpha_tmp2 /= 32768;
		
  qValpha_1 = (s16)(qValpha_tmp1);		
  qValpha_2 = (s16)(qValpha_tmp2);			
  Volt_Output.qV_Component1 = ((qValpha_1)+(qValpha_2));             //Ualpha=Uq*cosθ+ Ud*sinθ
  
  qVbeta_tmp1 = Volt_Input.qV_Component1 * Vector_Components.hSin;   //Uq*sinθ
  qVbeta_tmp1 /= 32768;  
  qVbeta_tmp2 = Volt_Input.qV_Component2 * Vector_Components.hCos;   //Ud*cosθ
  qVbeta_tmp2 /= 32768;
 
  qVbeta_1 = (s16)(qVbeta_tmp1);				
  qVbeta_2 = (s16)(qVbeta_tmp2);  				
  Volt_Output.qV_Component2 = -(qVbeta_1)+(qVbeta_2);                //Ubeta=Ud*cosθ- Uq*sinθ
 
  return(Volt_Output);
}

加入上面代码后,电机应该就能转动了,如果不转动,适当改变cnt的值,或者加入几毫秒的延迟,因为此刻我们并未将FOC放在ADC中断中,Stat_Volt_q_d.qV_Component2 即Id不要设置的太大,尽量保持在一个安全等级范围内,所以这样来看,使电机转起来只需要PWM模块与反Park变换和SVPWM模块,基本外设我们此时只用到了PWM,其实还是挺简单的哈。但是此刻是开环运行,我们无法得知电机真实的运行状态,所以需要引入电流闭环。

3、测量电角度!(编码器)

本次使用的是ABZ1250线的编码器,通过配置定时器的编码器模式,并设置为4倍频,可以准确的测量出当前电角度,具体配置见下图。注意选择好自己对应的编码器引脚,打开定时器中断,设置优先级为2 。
在这里插入图片描述
然后在初始化中,开启编码器模式,通过串口打印出电角度(可参考:串口使用printf),用手转动电机轴,观察信息是否正确,一圈范围为:-32768—+32768。或者借助步骤2,让电机转起来,然后查看电角度波形,如下图所示。有了电角度后,我们就可以让电机飞了!
在这里插入图片描述

4、测量电流吧!(三电阻采样)

按图示配置好ADC外设(只用了ADC1),并开启ADC中断,等级设置为1.生成代码。
在这里插入图片描述
可以使用步骤1测试ADC的正确性,每次导通一相,读取一次ADC值,增大占空比,看看AD值是否增加。然后,首先需要对初始ADC进行校准,也就是在关闭各个桥臂的情况下,读出3个注入通道的ADC值,作为初始电流偏置值,或者成为零电流值。具体可参考FOC和SVPWM的C语言代码实现。本文处理比较粗糙,直接多次读取后,进行赋值,不建议这种做法。然后通过下面的代码读出3相电流值。然后仍然可以使用开环SVPWM让电机转起来,然后看电流波形是否为正弦波,或者接近正弦波。
要计算出实际电流值:

实际电流值 = (ADC值>>4)/4096*(3.3-1.65)/Amp/R ;
Amp为放大倍数,R为采样电阻值

//3电阻采样电流值
Curr_Components SVPWM_3ShuntGetPhaseCurrentValues(void)
{
  Curr_Components Local_Stator_Currents;
  s32 wAux;

  switch (bSector)
   {
   case 4:
   case 5: //Current on Phase C not accessible     
             
            wAux = (s32)(hPhaseA_OffSet)- (HAL_ADCEx_InjectedGetValue(&hadc1,ADC_INJECTED_RANK_1)<<1);                
            if (wAux < S16_MIN)
            {
              Local_Stator_Currents.qI_Component1= S16_MIN;
            }  
            else  if (wAux > S16_MAX)
                  { 
                    Local_Stator_Currents.qI_Component1= S16_MAX;
                  }
                  else
                  {
                    Local_Stator_Currents.qI_Component1= wAux;
                  }
                     
           // Ib = (hPhaseBOffset)-(ADC Channel 12 value)
            wAux = (s32)(hPhaseB_OffSet)-(HAL_ADCEx_InjectedGetValue(&hadc1,ADC_INJECTED_RANK_2)<<1);
           // Saturation of Ib
            if (wAux < S16_MIN)
            {
              Local_Stator_Currents.qI_Component2= S16_MIN;
            }  
            else  if (wAux > S16_MAX)
                  { 
                    Local_Stator_Currents.qI_Component2= S16_MAX;
                  }
                  else
                  {
                    Local_Stator_Currents.qI_Component2= wAux;
                  }
           break;
           
   case 6:
   case 1:  //Current on Phase A not accessible     
            // Ib = (hPhaseBOffset)-(ADC Channel 12 value)
            wAux = (s32)(hPhaseB_OffSet)-(HAL_ADCEx_InjectedGetValue(&hadc1,ADC_INJECTED_RANK_2)<<1);
            //Saturation of Ib 
            if (wAux < S16_MIN)
            {
              Local_Stator_Currents.qI_Component2= S16_MIN;
            }  
            else  if (wAux > S16_MAX)
                  { 
                    Local_Stator_Currents.qI_Component2= S16_MAX;
                  }
                  else
                  {
                    Local_Stator_Currents.qI_Component2= wAux;
                  }
            // Ia = -Ic -Ib 
            wAux = (HAL_ADCEx_InjectedGetValue(&hadc1,ADC_INJECTED_RANK_3)<<1)-hPhaseC_OffSet-
                                            Local_Stator_Currents.qI_Component2;
            //Saturation of Ia
            if (wAux> S16_MAX)
            {
               Local_Stator_Currents.qI_Component1 = S16_MAX;
            }
            else  if (wAux <S16_MIN)
                  {
                   Local_Stator_Currents.qI_Component1 = S16_MIN;
                  }
                  else
                  {  
                    Local_Stator_Currents.qI_Component1 = wAux;
                  }
           break;
           
   case 2:
   case 3:  // Current on Phase B not accessible
            // Ia = (hPhaseAOffset)-(ADC Channel 11 value)     
            wAux = (s32)(hPhaseA_OffSet)-(HAL_ADCEx_InjectedGetValue(&hadc1,ADC_INJECTED_RANK_1)<<1);
            //Saturation of Ia 
            if (wAux < S16_MIN)
            {
              Local_Stator_Currents.qI_Component1= S16_MIN;
            }  
            else  if (wAux > S16_MAX)
                  { 
                    Local_Stator_Currents.qI_Component1= S16_MAX;
                  }
                  else
                  {
                    Local_Stator_Currents.qI_Component1= wAux;
                  }
     
            // Ib = -Ic-Ia;
            wAux = (HAL_ADCEx_InjectedGetValue(&hadc1,ADC_INJECTED_RANK_3)<<1) - hPhaseC_OffSet - 
                                            Local_Stator_Currents.qI_Component1;
            // Saturation of Ib
            if (wAux> S16_MAX)
            {
              Local_Stator_Currents.qI_Component2=S16_MAX;
            }
            else  if (wAux <S16_MIN)
                  {  
                    Local_Stator_Currents.qI_Component2 = S16_MIN;
                  }
                  else  
                  {
                    Local_Stator_Currents.qI_Component2 = wAux;
                  }                     
           break;

   default:
           break;
   } 
  
  return(Local_Stator_Currents); 
}

5、让电机飞!(电流闭环)

下面就是PID相关代码,包括初始化函数和PID函数,初始化函数加入到电机初始化函数中,然后将FOC函数中的开环调试部分注释,其它的打开(电压限幅函数在下面),将电角度设置为0,将q轴参考值,PID参数全部设置为0,d轴参考值设置为1000(具体由板子与电机决定,一定要在安全范围内),然后开始调节PI参数(由小忘大调),可以通过串口曲线绘制,观察PI效果,调好后,将q轴PI参数设置为相同,然后加入启动函数(主要是电角度对齐),将电角度设置成读取电角度函数,设置好Iq参考值,电机会一直开始转,如果不加限幅,会加速到最大。
工程代码见文末

volatile s16 hTorque_Reference;   //q轴设定值
volatile s16 hFlux_Reference;     //d轴设定值
volatile s16 hSpeed_Reference;    //速度环设定值
/****************************** 扭矩的PID参数,即q轴 *******************************************************/
#define PID_TORQUE_REFERENCE   (s16)000  //q轴的设定值,PID的目的就是要让测量的q轴值与设定值误差为0   
#define PID_TORQUE_KP_DEFAULT  (s16)2.35  //Kp默认值
#define PID_TORQUE_KI_DEFAULT  (s16)880   //Ki默认值
#define PID_TORQUE_KD_DEFAULT  (s16)0   //Kd默认值
 
/****************************** 转子磁通的PID参数,即d轴 *******************************************************/
#define PID_FLUX_REFERENCE   (s16)000       //d轴的设定值
#define PID_FLUX_KP_DEFAULT  (s16)2.35  
#define PID_FLUX_KI_DEFAULT  (s16)880  
#define PID_FLUX_KD_DEFAULT  (s16)0
 
/****************************** q轴和d轴PID参数的放大倍数 *******************************************************/
#define TF_KPDIV ((u16)(1024))    //因为Kp、Ki、Kd值很小,而我们需要整数计算,所以需要放大。得出计算结果之后,再缩小。1024
#define TF_KIDIV ((u16)(16384))//16384
#define TF_KDDIV ((u16)(8192))
 
/****************************** 速度环的PID参数 *******************************************************/
#define PID_SPEED_REFERENCE_RPM   (s16)1000         //电机的设定转速
#define PID_SPEED_REFERENCE       (u16)(PID_SPEED_REFERENCE_RPM/6)  //电机转速和速度环的设定值一般都不相等,电机不同,它们的关系也不同
#define PID_SPEED_KP_DEFAULT      (s16)50
#define PID_SPEED_KI_DEFAULT      (s16)10
#define PID_SPEED_KD_DEFAULT      (s16)0
#define NOMINAL_CURRENT           (s16)18000            //motor nominal current (0-pk),3倍的额定电流
#define IQMAX                     NOMINAL_CURRENT	   //速度环输出最大值
 
/****************************** 速度环PID参数的放大倍数 *******************************************************/
#define SP_KPDIV ((u16)(16))
#define SP_KIDIV ((u16)(256))
#define SP_KDDIV ((u16)(16))

void PID_Init (PID_Struct_t *PID_Torque, PID_Struct_t *PID_Flux, PID_Struct_t *PID_Speed)
{
    hTorque_Reference = PID_TORQUE_REFERENCE;          //q轴设定值初始化
/******************************************* 下面是控制扭矩的PID参数,即q轴大小 **************************************************************/
    PID_Torque->hKp_Gain    = PID_TORQUE_KP_DEFAULT;   //Kp参数,放大了hKp_Divisor倍。调节结果除以hKp_Divisor才是真实结果
    PID_Torque->hKp_Divisor = TF_KPDIV;                //Kp参数分数因子
    PID_Torque->hKi_Gain = PID_TORQUE_KI_DEFAULT;      //Ki参数
    PID_Torque->hKi_Divisor = TF_KIDIV;                //Ki参数分数因子
    PID_Torque->hKd_Gain = PID_TORQUE_KD_DEFAULT;      //Kd参数
    PID_Torque->hKd_Divisor = TF_KDDIV;                //Kd参数分数因子
    PID_Torque->wPreviousError = 0;                    //上次计算的误差值,用于D调节
    PID_Torque->hLower_Limit_Output=S16_MIN;           //PID输出下限幅
    PID_Torque->hUpper_Limit_Output= S16_MAX;          //PID输出上限幅
    PID_Torque->wLower_Limit_Integral = S16_MIN * TF_KIDIV;  //I调节的下限福
    PID_Torque->wUpper_Limit_Integral = S16_MAX * TF_KIDIV;  //I调节的上限幅
    PID_Torque->wIntegral = 0;                         //I调节的结果,因为是积分,所以要一直累积
/******************************************* 上面是控制扭矩的PID参数,即q轴大小 **************************************************************/
 
    hFlux_Reference = PID_FLUX_REFERENCE;              //对于SM-PMSM电机,Id = 0
/******************************************* 下面是控制转子磁通的PID参数,即d轴大小 **************************************************************/
    PID_Flux->hKp_Gain    = PID_FLUX_KP_DEFAULT;
    PID_Flux->hKp_Divisor = TF_KPDIV;
    PID_Flux->hKi_Gain = PID_FLUX_KI_DEFAULT;
    PID_Flux->hKi_Divisor = TF_KIDIV;
    PID_Flux->hKd_Gain = PID_FLUX_KD_DEFAULT;
    PID_Flux->hKd_Divisor = TF_KDDIV;
    PID_Flux->wPreviousError = 0;
    PID_Flux->hLower_Limit_Output=S16_MIN;   
    PID_Flux->hUpper_Limit_Output= S16_MAX;   
    PID_Flux->wLower_Limit_Integral = S16_MIN * TF_KIDIV;
    PID_Flux->wUpper_Limit_Integral = S16_MAX * TF_KIDIV;
    PID_Flux->wIntegral = 0;
/******************************************* 上面是控制转子磁通的PID参数,即d轴大小 **************************************************************/
 
    hSpeed_Reference = PID_SPEED_REFERENCE;
/******************************************* 下面是速度环的PID参数 **************************************************************/
    PID_Speed->hKp_Gain    = PID_SPEED_KP_DEFAULT;
    PID_Speed->hKp_Divisor = SP_KPDIV;
    PID_Speed->hKi_Gain = PID_SPEED_KI_DEFAULT;
    PID_Speed->hKi_Divisor = SP_KIDIV;
    PID_Speed->hKd_Gain = PID_SPEED_KD_DEFAULT;
    PID_Speed->hKd_Divisor = SP_KDDIV;
    PID_Speed->wPreviousError = 0;
    PID_Speed->hLower_Limit_Output= -IQMAX;   
    PID_Speed->hUpper_Limit_Output= IQMAX;   
    PID_Speed->wLower_Limit_Integral = -IQMAX * SP_KIDIV;
    PID_Speed->wUpper_Limit_Integral = IQMAX * SP_KIDIV;
    PID_Speed->wIntegral = 0;
/******************************************* 上面是速度环的PID参数 **************************************************************/
}
 
//#define DIFFERENTIAL_TERM_ENABLED    //不使用PID的D调节
typedef signed long long s64;
s16 PID_Regulator(s16 hReference, s16 hPresentFeedback, PID_Struct_t *PID_Struct)
{
    s32 wError, wProportional_Term,wIntegral_Term, houtput_32;
    s64 dwAux;
#ifdef DIFFERENTIAL_TERM_ENABLED                         //如果使能了D调节
	s32 wDifferential_Term;
#endif    
	
    wError= (s32)(hReference - hPresentFeedback);		 //设定值-反馈值,取得需要误差量delta_e
    wProportional_Term = PID_Struct->hKp_Gain * wError;	 //PID的P调节,即比例放大调节:wP = Kp * delta_e
 
    if (PID_Struct->hKi_Gain == 0)                       //下面进行PID的I调节,即误差的累积调节
    {
        PID_Struct->wIntegral = 0;                       //如果I参数=0,I调节就=0 
    }
    else
    {
        wIntegral_Term = PID_Struct->hKi_Gain * wError;		    //wI = Ki * delta_e	,本次积分项
        dwAux = PID_Struct->wIntegral + (s64)(wIntegral_Term);	//积分累积的调节量 = 以前的积分累积量 + 本次的积分项
 
        if (dwAux > PID_Struct->wUpper_Limit_Integral)		    //对PID的I调节做限幅
        {
            PID_Struct->wIntegral = PID_Struct->wUpper_Limit_Integral;	//上限
        }
        else if (dwAux < PID_Struct->wLower_Limit_Integral)				//下限
        {
            PID_Struct->wIntegral = PID_Struct->wLower_Limit_Integral;
        }
        else
        {
            PID_Struct->wIntegral = (s32)(dwAux);		          //不超限, 更新积分累积项为dwAux
        }
    }
#ifdef DIFFERENTIAL_TERM_ENABLED						          //如果使能了D调节
	{
	s32 wtemp;
  
	wtemp = wError - PID_Struct->wPreviousError;			      //取得上次和这次的误差之差
	wDifferential_Term = PID_Struct->hKd_Gain * wtemp;	          //D调节结果,wD = Kd * delta_d
	PID_Struct->wPreviousError = wError;    				      //更新上次误差,用于下次运算	
 
	}
	houtput_32 = (wProportional_Term/PID_Struct->hKp_Divisor+     //输出总的调节量 = 比例调节量/分数因子 +
                  PID_Struct->wIntegral/PID_Struct->hKi_Divisor + //				 + 积分调节量/分数因子
                  wDifferential_Term/PID_Struct->hKd_Divisor); 	  //				 + 微分调节量/分数因子
 
#else  	
	//把P调节和I调节结果除以分数因子再相加,得到PI控制的结果
    houtput_32 = (wProportional_Term/PID_Struct->hKp_Divisor + PID_Struct->wIntegral/PID_Struct->hKi_Divisor);       
#endif
    if (houtput_32 >= PID_Struct->hUpper_Limit_Output)	   //PI控制结果限幅
    {
        return(PID_Struct->hUpper_Limit_Output);
    }
    else if (houtput_32 < PID_Struct->hLower_Limit_Output) //下限
    {
        return(PID_Struct->hLower_Limit_Output);
    }
    else
    {
        return((s16)(houtput_32)); 						   //不超限。输出结果 houtput_32
    }
}

速度环跟踪曲线图
阶跃信号
在这里插入图片描述
正弦信号
在这里插入图片描述
工程链接:PMSM电机FOC简易驱动程序

版权声明:本文为CSDN博主「电气chao」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_39587650/article/details/121323671

生成海报
点赞 0

电气chao

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

74HC138译码器的原理和使用

前言 译码器就是将每个输入的二进制代码译成对应的输出高低电平信号,和编码器互为逆过程。 百度百科 74HC138是一款高速CMOS器件,74HC138引脚兼容低功耗肖特基TTL(LSTTL&#xf

PCA9555详细学习

2022.01.27 控制寄存器和命令寄存器,及英文理解 一般8位作为地址,其中前四位时固定的,中间三位为地址配置,最后一位是读写位,即读是1,写是0 当地址