【STM32】HAL库 STM32CubeMX教程十四---SPI

前言:
本系列教程将HAL库与STM32CubeMX结合在一起讲解,使您可以更快速的学会各个模块的使用

在我们的HAL库中,对硬件SPI函数做了很好的集成,使得之前SPI几百行代码,在HAL库中,只需要寥寥几行就可以完成 那么这篇文章将带你去感受下它的优异之处,这些优异的函数,也正是HAL库的优点所在

本文 1首先讲解SPI工作原理及W25QX芯片原理,2基于CubeMx创建工程 3 对HAL库SPI函数进行讲解,4例程详解

所用工具:

1、芯片: STM32F103ZET6

2、STM32CubeMx软件

3、IDE: MDK-Keil软件

4、STM32F1xx/STM32F4xxHAL库

5、SPI: 使用硬件SPI1

知识概括:

通过本篇博客您将学到:

SPI的基本原理

STM32CubeMX创建SPI例程

HAL库SPI函数库

什么是SPI

SPI 是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola(摩托罗拉)首先在其MC68HCXX系列处理器上定义的。

SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。

SPI主从模式

SPI分为主、从两种模式,一个SPI通讯系统需要包含一个(且只能是一个)主设备,一个或多个从设备。提供时钟的为主设备(Master),接收时钟的设备为从设备(Slave),SPI接口的读写操作,都是由主设备发起。当存在多个从设备时,通过各自的片选信号进行管理。

SPI是全双工且SPI没有定义速度限制,一般的实现通常能达到甚至超过10 Mbps

SPI信号线

SPI接口一般使用四条信号线通信:
SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)

  • MISO主设备输入/从设备输出引脚。该引脚在从模式下发送数据,在主模式下接收数据。
  • MOSI主设备输出/从设备输入引脚。该引脚在主模式下发送数据,在从模式下接收数据。
  • SCLK串行时钟信号,由主设备产生。
  • CS/SS从设备片选信号,由主设备控制。它的功能是用来作为“片选引脚”,也就是选择指定的从设备,让主设备可以单独地与特定从设备通讯,避免数据线上的冲突。

硬件上为4根线。

SPI一对一
在这里插入图片描述

SPI一对多
在这里插入图片描述

SPI数据发送接收

SPI主机和从机都有一个串行移位寄存器,主机通过向它的SPI串行寄存器写入一个字节来发起一次传输。

  1. 首先拉低对应SS信号线,表示与该设备进行通信
  2. 主机通过发送SCLK时钟信号,来告诉从机写数据或者读数据
    这里要注意,SCLK时钟信号可能是低电平有效,也可能是高电平有效,因为SPI有四种模式,这个我们在下面会介绍
  3. 主机(Master)将要发送的数据写到发送数据缓存区(Menory),缓存区经过移位寄存器(0~7),串行移位寄存器通过MOSI信号线将字节一位一位的移出去传送给从机,,同时MISO接口接收到的数据经过移位寄存器一位一位的移到接收缓存区。
  4. 从机(Slave)也将自己的串行移位寄存器(0~7)中的内容通过MISO信号线返回给主机。同时通过MOSI信号线接收主机发送的数据,这样,两个移位寄存器中的内容就被交换。

在这里插入图片描述
SPI只有主模式和从模式之分,没有读和写的说法,外设的写操作和读操作是同步完成的。如果只进行写操作,主机只需忽略接收到的字节;反之,若主机要读取从机的一个字节,就必须发送一个空字节来引发从机的传输。也就是说,你发一个数据必然会收到一个数据;你要收一个数据必须也要先发一个数据。

SPI工作模式

根据时钟极性(CPOL)及相位(CPHA)不同,SPI有四种工作模式。
时钟极性(CPOL)定义了时钟空闲状态电平:

  • CPOL=0为时钟空闲时为低电平
  • CPOL=1为时钟空闲时为高电平

时钟相位(CPHA)定义数据的采集时间。

  • CPHA=0:在时钟的第一个跳变沿(上升沿或下降沿)进行数据采样。
  • CPHA=1:在时钟的第二个跳变沿(上升沿或下降沿)进行数据采样。
    在这里插入图片描述

关于SPI简单介绍到这里,详细讲解请参看:

《SPI原理超详细讲解—值得一看》

W25Q128 FLASH芯片介绍

W25Q128是一款SPI通信的FLASH芯片,可以通过标准/两线/四线SPI控制,其FLASH的大小为16M,分为 256 个块(Block),每个块大小为 64K 字节,每个块又分为 16个扇区(Sector),每个扇区 4K 个字节。通过SPI通信协议即可实现MCU(STM32)和 W25Q128 之间的通信。实现W25Q128的控制需要通过SPI协议发送相应的控制指令,并满足一定的时序。

原理图连接

在这里插入图片描述
常用指令:

写使能(Write Enable) (06h)

在这里插入图片描述

向FLASH发送0x06 写使能命令即可开启写使能,首先CS片选拉低,控制写入字节函数写入命令,CS片选拉高。

扇区擦除指令(Sector Erase) (0x20h)
在这里插入图片描述
扇区擦除指令,数据写入前必须擦除对应的存储单元,该指令先拉低/CS引脚电平,接着传输“20H”指令和要24位要擦除扇区的地址。

读命令(Read Data) (03h)

读数据指令可从存储器依次一个或多个数据字节,该指令通过主器件拉低/CS电平使能设备开始传输,然后传输“03H”指令,接着通过DI管脚传输24位地址,从器件接到地址后,寻址存储器中的数据通过DO引脚输出。每传输一个字节地址自动递增,所以只要时钟继续传输,可以不断读取存储器中的数据。
在这里插入图片描述

状态读取命令(Read Status Register)

读状态寄存器1(05H),状态寄存器2(35H),状态寄存器3(15H)
写入命令0x05,即可读取状态寄存器的值。
在这里插入图片描述

写入命令(Page Program) (02h)

在这里插入图片描述

在对W25Q128 FLASH的写入数据的操作中一定要先擦出扇区,在进行写入,否则将会发生数据错误。
W25Q128 FLASH一次性最大写入只有256个字节。
在进行写操作之前,一定要开启写使能(Write Enable)。
当只接收数据时不但能只检测RXNE状态 ,必须同时向发送缓冲区发送数据才能驱动SCK时钟跳变。

基于CubeMx的讲解

1设置RCC时钟
在这里插入图片描述

设置高速外部时钟HSE 选择外部时钟源

2 SPI设置

SPI2设置为全双工主模式,硬件NSS关闭,如下图:
在这里插入图片描述

在这里插入图片描述
模式设置:

  • 有主机模式全双工/半双工
  • 从机模式全双工/半双工
  • 只接收主机模式/只接收从机模式
  • 只发送主机模式

因为我们是和W25Q128V芯片闪存芯片进行通信,所以设置为主机全双工

不使能硬件NSS
在这里插入图片描述

STM32有硬件NSS(片选信号),可以选择使能,也可以使用其他IO口接到芯片的NSS上进行代替

其中SIP1的片选NSS : SPI1_NSS(PA4)
其中SIP2的片选NSS : SPI2_NSS(PB12)

如果片选引脚没有连接 SPI1_NSS(PA4)或者SPI2_NSS(PB12),则需要选择软件片选

NSS管脚及我们熟知的片选信号,作为主设备NSS管脚为高电平,从设备NSS管脚为低电平。当NSS管脚为低电平时,该spi设备被选中,可以和主设备进行通信。在stm32中,每个spi控制器的NSS信号引脚都具有两种功能,即输入和输出。所谓的输入就是NSS管脚的信号给自己。所谓的输出就是将NSS的信号送出去,给从机。
对于NSS的输入,又分为软件输入和硬件输入。
软件输入:
NSS分为内部管脚和外部管脚,通过设置spi_cr1寄存器的ssm位和ssi位都为1可以设置NSS管脚为软件输入模式且内部管脚提供的电平为高电平,其中SSM位为使能软件输入位。SSI位为设置内部管脚电平位。同理通过设置SSM和SSI位1和0则此时的NSS管脚为软件输入模式但内部管脚提供的电平为0。若从设备是一个其他的带有spi接口的芯片,并不能选择NSS管脚的方式,则可以有两种办法,一种是将NSS管脚直接接低电平。另一种就是通过主设备的任何一个gpio口去输出低电平选中从设备。
硬件输入:
主机接高电平,从机接低电平。

左键对应的软件片选引脚,选择GPIO_Output(输出模式),然后点击GPIO,设置一下备注。

我这里虽然PB12是SPI2的硬件片选NSS,但是我想用软件片选,所以关闭了硬件NSS

在这里插入图片描述
在这里插入图片描述

SPI配置默认如下

SPI配置中设置数据长度为8bit,MSB先输出分频为64分频,则波特率为125KBits/s。其他为默认设置。
Motorla格式,CPOL设置为Low,CPHA设置为第一个边沿。不开启CRC检验,NSS为软件控制。

在这里插入图片描述

最后记得初始化一下串口,因为需要测试例程,发送数据到上位机。很简单,这里就不再赘述了,不懂得同学请看:

【STM32】HAL库 STM32CubeMX教程四—UART串口通信详解

在这里插入图片描述
3时钟源设置在这里插入图片描述
我的是 外部晶振为8MHz

  • 1选择外部时钟HSE 8MHz
  • 2PLL锁相环倍频9倍
  • 3系统时钟来源选择为PLL
  • 4设置APB1分频器为 /2
  • 5 使能CSS监视时钟

32的时钟树框图 如果不懂的话请看《【STM32】系统时钟RCC详解(超详细,超全面)》

4项目文件设置

在这里插入图片描述

  • 1 设置项目名称
  • 2 设置存储路径
  • 3 选择所用IDE

在这里插入图片描述
5创建工程文件

然后点击GENERATE CODE 创建工程

配置下载工具
新建的工程所有配置都是默认的 我们需要自行选择下载模式,勾选上下载后复位运行

在这里插入图片描述

SPI函数详解

 

在stm32f1xx_hal_spi.h头文件中可以看到spi的操作函数。分别对应轮询,中断和DMA三种控制方式。
在这里插入图片描述

  • 轮询: 最基本的发送接收函数,就是正常的发送数据和接收数据
  • 中断: 在SPI发送或者接收完成的时候,会进入SPI回调函数,用户可以编写回调函数,实现设定功能
  • DMA: DMA传输SPI数据

 
 

利用SPI接口发送和接收数据主要调用以下两个函数:

HAL_StatusTypeDef  HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);//发送数据
HAL_StatusTypeDef  HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);//接收数据

SPI发送数据函数

HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);//发送数据

参数:

  • *hspi: 选择SPI1/2,比如&hspi1,&hspi2
  • *pData : 需要发送的数据,可以为数组
  • Size: 发送数据的字节数,1 就是发送一个字节数据
  • Timeout: 超时时间,就是执行发送函数最长的时间,超过该时间自动退出发送函数

SPI接收数据函数

HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout);//接收数据

参数:

  • *hspi: 选择SPI1/2,比如&hspi1,&hspi2
  • *pData : 接收发送过来的数据的数组
  • Size: 接收数据的字节数,1 就是接收一个字节数据
  • Timeout: 超时时间,就是执行接收函数最长的时间,超过该时间自动退出接收函数

SPI接收回调函数:

 HAL_SPI_TransmitReceive_IT(&hspi1, TXbuf,RXbuf,CommSize);

当SPI上接收出现了 CommSize个字节的数据后,中断函数会调用SPI回调函数:

   HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)

用户可以重新定义回调函数,编写预定功能即可,在接收完成之后便会进入回调函数

片选引脚

因为我们是软件使能片选,定义片选引脚,CS片选低电平为有效使能CS片选高电平不使能

这里用两个宏定义来代替

在main.h中有宏定义命名,SPI2_CS_Pin 就是PB12

//以W25Q128为例
#define SPI_CS_Enable() 			HAL_GPIO_WritePin(GPIOB, SPI2_CS_Pin, GPIO_PIN_RESET)
#define SPI_CS_Disable() 		HAL_GPIO_WritePin(GPIOB, SPI2_CS_Pin, GPIO_PIN_SET)

SPI例程详解

因为不同的flash芯片通信协议以及方式都是不同的,所以这里介绍下具体的SPI的发送和接收应该怎么写,具体的请看芯片手册修改下即可,这里提供下W25QXX的驱动文件,以及测试例程,测试是正常没问题

挑几个函数讲解一下:

在w25Qxx.h钟可以修改CS片选引脚,W25Qx_Enable(),W25Qx_Disable()分别为使能和失能SPI设备,即拉低和拉高/CS电平

#define W25Qx_Enable() 			HAL_GPIO_WritePin(SPI2_CS_GPIO_Port, SPI2_CS_Pin, GPIO_PIN_RESET)
#define W25Qx_Disable() 		HAL_GPIO_WritePin(SPI2_CS_GPIO_Port, SPI2_CS_Pin, GPIO_PIN_SET)

w25Qxx复位函数

  • 函数开始先将要发送的数据(命令(0x66)和地址(0x99))存储在cmd数组中,
  • 拉低片选信号,开始SPI通信
  • 然后后通过HAL_SPI_Transmit()函数发送出去
  • 拉高片选信号,关闭SPI通信

W25Qx_TIMEOUT_VALUE是最大超时时间,在w25Qxx.h中定义为1000,单位为us
在这里插入图片描述

/**
  * @brief  This function reset the W25Qx.
  * @retval None
  */
static void	BSP_W25Qx_Reset(void)
{
	uint8_t cmd[2] = {RESET_ENABLE_CMD,RESET_MEMORY_CMD};
	
	W25Qx_Enable();
	/* Send the reset command */
	HAL_SPI_Transmit(&hspi2, cmd, 2, W25Qx_TIMEOUT_VALUE);	
	W25Qx_Disable();

}

W25QXX读函数:
三个参数:

  • pData 存放读取到的数据的数组
  • ReadAddr 读取数据的地址
  • Size 读取数据的大小

  • 函数开始先将要发送的数据(命令和地址)存储在cmd数组中,
  • 拉低片选信号,开始SPI通信
  • 然后后通过HAL_SPI_Transmit()函数发送出去,首先发送写命令(0X03),上方有讲解,然后发送三个字节(24 Bit)的地址
  • 接着通过HAL_SPI_Receive()接收读取的数据。
  • 拉高片选信号,关闭SPI通信
    在这里插入图片描述

uint8_t BSP_W25Qx_Read(uint8_t* pData, uint32_t ReadAddr, uint32_t Size)
{
	uint8_t cmd[4];

	/* Configure the command */
	cmd[0] = READ_CMD;
	cmd[1] = (uint8_t)(ReadAddr >> 16);
	cmd[2] = (uint8_t)(ReadAddr >> 8);
	cmd[3] = (uint8_t)(ReadAddr);
	
	W25Qx_Enable();
	/* Send the read ID command */
	HAL_SPI_Transmit(&hspi2, cmd, 4, W25Qx_TIMEOUT_VALUE);	
	/* Reception of the data */
	if (HAL_SPI_Receive(&hspi2, pData,Size,W25Qx_TIMEOUT_VALUE) != HAL_OK)
  {
    return W25Qx_ERROR;
  }
	W25Qx_Disable();
	return W25Qx_OK;
}

写使能(Write Enable) (06h)

在这里插入图片描述

向FLASH发送0x06 写使能命令即可开启写使能,首先CS片选拉低,控制写入字节函数写入命令,CS片选拉高。

uint8_t BSP_W25Qx_WriteEnable(void)
{
	uint8_t cmd[] = {WRITE_ENABLE_CMD};
	uint32_t tickstart = HAL_GetTick();

	/*Select the FLASH: Chip Select low */
	W25Qx_Enable();
	/* Send the read ID command */
	HAL_SPI_Transmit(&hspi2, cmd, 1, W25Qx_TIMEOUT_VALUE);	
	/*Deselect the FLASH: Chip Select high */
	W25Qx_Disable();
	
	/* Wait the end of Flash writing */
	while(BSP_W25Qx_GetStatus() == W25Qx_BUSY);
	{
		/* Check for the Timeout */
    if((HAL_GetTick() - tickstart) > W25Qx_TIMEOUT_VALUE)
    {        
			return W25Qx_TIMEOUT;
    }
	}
	
	return W25Qx_OK;
}

扇区擦除函数

扇区擦除指令(Sector Erase) (0x20h)
在这里插入图片描述
扇区擦除指令,数据写入前必须擦除对应的存储单元,并且使能写操作,该指令先拉低/CS引脚电平,接着传输“20H”指令和要24位要擦除扇区的地址。判断flash是否为忙状态,如果不为忙则擦除操作完成。

uint8_t BSP_W25Qx_Erase_Block(uint32_t Address)
{
	uint8_t cmd[4];
	uint32_t tickstart = HAL_GetTick();
	cmd[0] = SECTOR_ERASE_CMD;
	cmd[1] = (uint8_t)(Address >> 16);
	cmd[2] = (uint8_t)(Address >> 8);
	cmd[3] = (uint8_t)(Address);
	
	/* Enable write operations */
	BSP_W25Qx_WriteEnable();
	
	/*Select the FLASH: Chip Select low */
	W25Qx_Enable();
	/* Send the read ID command */
	HAL_SPI_Transmit(&hspi2, cmd, 4, W25Qx_TIMEOUT_VALUE);	
	/*Deselect the FLASH: Chip Select high */
	W25Qx_Disable();
	
	/* Wait the end of Flash writing */
	while(BSP_W25Qx_GetStatus() == W25Qx_BUSY);
	{
		/* Check for the Timeout */
    if((HAL_GetTick() - tickstart) > W25Q128FV_SECTOR_ERASE_MAX_TIME)
    {        
			return W25Qx_TIMEOUT;
    }
	}
	return W25Qx_OK;
}

下载地址

w25Qxx.zip

例程测试

重新定义printf函数
在 stm32f1xx_hal.c中包含#include <stdio.h>

#include "stm32f4xx_hal.h"
#include <stdio.h>
extern UART_HandleTypeDef huart1;   //声明串口

在 stm32f1xx_hal.c 中重写fget和fput函数

/**
  * 函数功能: 重定向c库函数printf到DEBUG_USARTx
  * 输入参数: 无
  * 返 回 值: 无
  * 说    明:无
  */
int fputc(int ch, FILE *f)
{
  HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xffff);
  return ch;
}
 
/**
  * 函数功能: 重定向c库函数getchar,scanf到DEBUG_USARTx
  * 输入参数: 无
  * 返 回 值: 无
  * 说    明:无
  */
int fgetc(FILE *f)
{
  uint8_t ch = 0;
  HAL_UART_Receive(&huart1, &ch, 1, 0xffff);
  return ch;
}

main.c

在main.c里添加以下代码:

#include <string.h>
#include "W25QXX.h"



uint8_t wData[0x100];
uint8_t rData[0x100];
uint32_t i;
uint8_t ID[2];

printf("\r\n SPI-W25Qxxx Example \r\n\r\n");

  /*##-1- Read the device ID  ########################*/

  BSP_W25Qx_Init();
  BSP_W25Qx_Read_ID(ID);

  printf(" W25Qxxx ID is : 0x%02X 0x%02X \r\n\r\n",ID[0],ID[1]);
  /*##-2- Erase Block ##################################*/
  if(BSP_W25Qx_Erase_Block(0) == W25Qx_OK)
      printf(" SPI Erase Block ok\r\n");
  else
      Error_Handler();
  /*##-3- Written to the flash ########################*/
  /* fill buffer */
  for(i =0;i<0x100;i ++)
  {
          wData[i] = i;
        rData[i] = 0;
  }
 if(BSP_W25Qx_Write(wData,0x00,0x100)== W25Qx_OK)
      printf(" SPI Write ok\r\n");
  else
      Error_Handler();
  /*##-4- Read the flash     ########################*/

  if(BSP_W25Qx_Read(rData,0x00,0x100)== W25Qx_OK)
      printf(" SPI Read ok\r\n\r\n");
  else
      Error_Handler();
  printf("SPI Read Data : \r\n");
  for(i =0;i<0x100;i++)
      printf("0x%02X  ",rData[i]);
  printf("\r\n\r\n");
  /*##-5- check date          ########################*/   
  if(memcmp(wData,rData,0x100) == 0 )
      printf(" W25Q128FV SPI Test OK\r\n");
  else
      printf(" W25Q128FV SPI Test False\r\n");

STM32F103测试正常
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

版权声明:本文为CSDN博主「Z小旋」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/as480133937/article/details/105849607

生成海报
点赞 0

Z小旋

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

【STM32】HAL库 STM32CubeMX教程十四---SPI

前言: 本系列教程将HAL库与STM32CubeMX结合在一起讲解,使您可以更快速的学会各个模块的使用 在我们的HAL库中,对硬件SPI函数做了很好的集成,使得之前SPI几百行代码&#x

RT-Thread Studio联合STM32CubeMX进行开发

RT-Thread Studio联合STM32CubeMX进行开发 一、准备内容 1.1硬件平台 使用正点原子STM32F4探索者 使用到板载LED灯,原理图如下: 1.2软件环境 STM32CubeMX软件

GD32利用CubeMX构建代码的测试

前言 近期搞到一块GD32F103c8t6的开发板,号称是和STM32F103C8T6 Pin To Pin兼容的,查了一些资料,很多老哥也搞过类似的测试,多半结果是不兼容&#xff0c