STM32串口USART1接收字符串

STM32F407ZE开发板实现使用串口USART1接收、发送字符串实例
具体代码及解析如下:

main.c部分

#include <stm32f4xx.h> 
#include "led.h"
#include "ustart.h"
#include <string.h>

int main()
{
	LED_Init();
	USART1_Init();
	USART_SendString(USART1, "Hello world!\r\n");

	while(1)
	{
		if(Receive_Flag == 1)						//接收数据标志位等于1(接收完毕,停止接收)
			Receive_Flag = 0;						//接收数据标志位置0(可以开始接收)
	}
}


ustart.h部分

#ifndef USTART_H
#define USTART_H

#include <stm32f4xx.h>
#include <stm32f4xx_usart.h>
#include <stdio.h>
#include "sys.h"

extern char USART1_ReceiveData[50];								//接收PC端发送过来的字符
extern int Receive_Flag;

void USART1_Init();
void USART_SendString(USART_TypeDef* USARTx, char *DataString);
#endif

ustart.c部分

#include "ustart.h"
#include <string.h>

int fputc(int ch, FILE *f) 
{
	/* 发送一个字节数据到串口 */
	USART_SendData(USART1, (uint8_t) ch); //程序开始时,会发送一次数据,ch是系统分配的(可能是0),串口会显示大概两个空格的内容
	/* 等待发送完毕 */
	while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
	return (ch);
}

void USART1_Init()
{
	GPIO_InitTypeDef 	GPIOInit_Struct;
	USART_InitTypeDef 	USARTInit_Struct;
	NVIC_InitTypeDef  	USARTNVIC_Struct;
	
	//1、使能时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
	
	//2、初始化对应的IO引脚复用为USART1功能
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE);
	
	GPIOInit_Struct.GPIO_Pin 	= GPIO_Pin_9 | GPIO_Pin_10;
	GPIOInit_Struct.GPIO_Mode	= GPIO_Mode_AF;
	GPIOInit_Struct.GPIO_OType	= GPIO_OType_PP;
	GPIOInit_Struct.GPIO_Speed 	= GPIO_Fast_Speed;
	GPIOInit_Struct.GPIO_PuPd	= GPIO_PuPd_UP;
	GPIO_Init(GPIOA,&GPIOInit_Struct);
	
	//将PA9  PA10复用为USART1功能
	GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_USART1);
	GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1);
	
	//3、USART1初始化
	USARTInit_Struct.USART_BaudRate 	= 115200; 								//波特率
	USARTInit_Struct.USART_Parity		= USART_Parity_No;						//无校验位
	USARTInit_Struct.USART_StopBits		= USART_StopBits_1;						//1位停止位
	USARTInit_Struct.USART_WordLength	= USART_WordLength_8b;					//8位数据位
	USARTInit_Struct.USART_Mode			= USART_Mode_Rx | USART_Mode_Tx;		//收发模式
	USARTInit_Struct.USART_HardwareFlowControl	= USART_HardwareFlowControl_None;//无硬件控制流
	USART_Init(USART1,&USARTInit_Struct);
	
	//开启串口终端
	USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);
	
	USARTNVIC_Struct.NVIC_IRQChannel = USART1_IRQn;//stm32f4xx.h
	USARTNVIC_Struct.NVIC_IRQChannelPreemptionPriority = 0;
	USARTNVIC_Struct.NVIC_IRQChannelSubPriority        = 0;
	USARTNVIC_Struct.NVIC_IRQChannelCmd	= ENABLE;
	NVIC_Init(&USARTNVIC_Struct);
	
	//4、开启串口
	USART_Cmd(USART1,ENABLE);
}

void USART_SendString(USART_TypeDef* USARTx, char *DataString)
{
	int i = 0;
	USART_ClearFlag(USARTx,USART_FLAG_TC);										//发送字符前清空标志位(否则缺失字符串的第一个字符)
	while(DataString[i] != '\0')												//字符串结束符
	{
		USART_SendData(USARTx,DataString[i]);									//每次发送字符串的一个字符
		while(USART_GetFlagStatus(USARTx,USART_FLAG_TC) == 0);					//等待数据发送成功
		USART_ClearFlag(USARTx,USART_FLAG_TC);									//发送字符后清空标志位
		i++;
	}
}

char USART_ReceiveString[50];													//接收PC端发送过来的字符
int Receive_Flag = 0;															//接收消息标志位
int Receive_sum = 0;															//数组下标
void USART1_IRQHandler(void)
{
	if(USART_GetITStatus(USART1,USART_IT_RXNE) == 1)							//USART_FLAG_RXNE判断数据,== 1则有数据
	{
		if(Receive_sum > 49)													//数组能存放50个字节的数据				
		{
			USART_ReceiveString[49] = '\0';										//数据字节超过50位时,将最后一位设置为\0	
			Receive_Flag = 1;													//接收标志位置1,停止接收数据
			Receive_sum = 0;													//数组下标置0
		}
		
		if(Receive_Flag == 0)													//接收标志位等于0,开始接收数据
		{
			USART_ReceiveString[Receive_sum] = USART_ReceiveData(USART1);		//通过USART1串口接收字符
			Receive_sum++;														//数组下标++
		}
		
		if(Receive_sum >= 2)													//数组下标大于2
		{
			if(USART_ReceiveString[Receive_sum-2] == '\r' && USART_ReceiveString[Receive_sum-1] == '\n' )
			{
				USART_ReceiveString[Receive_sum-1] = '\0';						
				USART_ReceiveString[Receive_sum-2] = '\0';
				Receive_Flag = 1;												//接收标志位置1,停止接收数据
				Receive_sum = 0;												//数组下标置0
				printf("%s\r\n",USART_ReceiveString);					

				if(strcmp(USART_ReceiveString,"hello") == 0)
				{
					PFout(9) = !PFout(9);
				}
				if(strcmp(USART_ReceiveString,"world") == 0)
				{
					PFout(10) = !PFout(10);
				}
				if(strcmp(USART_ReceiveString,"jiajia") == 0)
				{
					PEout(13) = !PEout(13);
				}
				if(strcmp(USART_ReceiveString,"haha") == 0)
				{
					PEout(14) = !PEout(14);
				}
			}		
		}
		USART_ClearITPendingBit(USART1,USART_IT_RXNE);							//接收后先清空标志位
	}
}

led.h部分

#ifndef _LED_H_
#define _LED_H_

#include <stm32f4xx.h>
#include "sys.h"

void LED_Init(void);

#endif

led.c部分

#include "led.h"

void LED_Init(void)
{
	GPIO_InitTypeDef aaa;
	
	//1、先开启对应用到的模块时钟节拍
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF,ENABLE);
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE);//PE组时钟

	//2、可以初始化配置GPIO  F组的9号引脚
	aaa.GPIO_Pin   = GPIO_Pin_9 | GPIO_Pin_10;
	aaa.GPIO_Mode  = GPIO_Mode_OUT;//输出模式
	aaa.GPIO_Speed = GPIO_Fast_Speed;//快速  点灯和引脚速度无关
	aaa.GPIO_OType = GPIO_OType_PP;//推挽输出
	aaa.GPIO_PuPd  = GPIO_PuPd_UP;//内部上拉
	GPIO_Init(GPIOF,&aaa);
	
	
	aaa.GPIO_Pin   = GPIO_Pin_13 | GPIO_Pin_14;
	GPIO_Init(GPIOE,&aaa);
	
	//初始化完成  灭掉4盏灯
	PFout(9)  = 1;
	PFout(10) = 1;
	PEout(13) = 1;
	PEout(14) = 1;

}

sys.h部分

#ifndef __SYS_H
#define __SYS_H	 
#include "stm32f4xx.h" 

//IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr & 0xFFFFF)<<5)+(bitnum<<2)) 
#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr)) 
#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum)) 
//IO口地址映射
#define GPIOA_ODR_Addr    (GPIOA_BASE+20) //0x40020014
#define GPIOB_ODR_Addr    (GPIOB_BASE+20) //0x40020414 
#define GPIOC_ODR_Addr    (GPIOC_BASE+20) //0x40020814 
#define GPIOD_ODR_Addr    (GPIOD_BASE+20) //0x40020C14 
#define GPIOE_ODR_Addr    (GPIOE_BASE+20) //0x40021014 
#define GPIOF_ODR_Addr    (GPIOF_BASE+20) //0x40021414    
#define GPIOG_ODR_Addr    (GPIOG_BASE+20) //0x40021814   
#define GPIOH_ODR_Addr    (GPIOH_BASE+20) //0x40021C14    
#define GPIOI_ODR_Addr    (GPIOI_BASE+20) //0x40022014     

#define GPIOA_IDR_Addr    (GPIOA_BASE+16) //0x40020010 
#define GPIOB_IDR_Addr    (GPIOB_BASE+16) //0x40020410 
#define GPIOC_IDR_Addr    (GPIOC_BASE+16) //0x40020810 
#define GPIOD_IDR_Addr    (GPIOD_BASE+16) //0x40020C10 
#define GPIOE_IDR_Addr    (GPIOE_BASE+16) //0x40021010 
#define GPIOF_IDR_Addr    (GPIOF_BASE+16) //0x40021410 
#define GPIOG_IDR_Addr    (GPIOG_BASE+16) //0x40021810 
#define GPIOH_IDR_Addr    (GPIOH_BASE+16) //0x40021C10 
#define GPIOI_IDR_Addr    (GPIOI_BASE+16) //0x40022010 
 
//STM32中  对寄存器的访问  是不能单独访问寄存器的单个bit  只能以32bit地址访问寄存器
//这些位为只写形式,只能在字(word)--4byte、半字2byte 或字节模式下访问 
//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n)   BIT_ADDR(GPIOA_ODR_Addr,n)  //输出 
#define PAin(n)    BIT_ADDR(GPIOA_IDR_Addr,n)  //输入 

#define PBout(n)   BIT_ADDR(GPIOB_ODR_Addr,n)  //输出 
#define PBin(n)    BIT_ADDR(GPIOB_IDR_Addr,n)  //输入 

#define PCout(n)   BIT_ADDR(GPIOC_ODR_Addr,n)  //输出 
#define PCin(n)    BIT_ADDR(GPIOC_IDR_Addr,n)  //输入 

#define PDout(n)   BIT_ADDR(GPIOD_ODR_Addr,n)  //输出 
#define PDin(n)    BIT_ADDR(GPIOD_IDR_Addr,n)  //输入 

#define PEout(n)   BIT_ADDR(GPIOE_ODR_Addr,n)  //输出 
#define PEin(n)    BIT_ADDR(GPIOE_IDR_Addr,n)  //输入

#define PFout(n)   BIT_ADDR(GPIOF_ODR_Addr,n)  //输出 
#define PFin(n)    BIT_ADDR(GPIOF_IDR_Addr,n)  //输入

#define PGout(n)   BIT_ADDR(GPIOG_ODR_Addr,n)  //输出 
#define PGin(n)    BIT_ADDR(GPIOG_IDR_Addr,n)  //输入

#define PHout(n)   BIT_ADDR(GPIOH_ODR_Addr,n)  //输出 
#define PHin(n)    BIT_ADDR(GPIOH_IDR_Addr,n)  //输入

#define PIout(n)   BIT_ADDR(GPIOI_ODR_Addr,n)  //输出 
#define PIin(n)    BIT_ADDR(GPIOI_IDR_Addr,n)  //输入


#endif

版权声明:本文为CSDN博主「佳佳鸽」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_43793181/article/details/109134705

生成海报
点赞 0

佳佳鸽

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

Lin总线通信在STM32作为主机代码以及从机程序

距离上次做资料准备已经过去六天了。最近在学车,上周末就没有开电脑。这周开始进行了Lin通信的代码整理,目前是可以正常通信的了,采用的是增强型校验方式。后期再进一步跟进研究。。。更新一博,留

STM32串口接收数据处理方法

STM32串口接收数据处理方法 STM32串口接收定长数据处理方法 STM32串口接收定长数据的处理方法非常简单,我目前做项目都是用的这个,也可用做处理MODBUS协议,直接上代码。 void U

趣聊51之串口通信(概念篇)

对于刚刚接触单片机的同学们来说,串口通信似乎是一个神秘感十足的东西,笔者在刚刚开始学习51单片机时,读的是郭天祥先生的那本著名的《新概念51单片机教程》,贼厚的一本书,但是等