基于51单片机+DS18B20温度测温器+LCD1602显示

DS18B20相关介绍

学习视频推荐

我看的是B站的从零学电子。网址

DS18B20特性

1.独特的单总线接口,就需一条线则可实现双向通信(测温)
2.测温范围:-55℃~+125℃,可通过编程设定9—12位分辨率,对应分辨温度分别为0.5、0.25、0.125、0.0625℃。
3.支持多点组网(可连接多个DS18B20温度传感器),多个DS18B20可以并联(3或2线)实现多个组网测温,但注意超过8个要解决好供电问题,否则电压过低会导致传输不稳定,从而数据不准确。
4.工作电压:3.0~5.5V (寄生电源方式下可由数据线供电)
5.在使用过程中不需要外围电路,全部传感元件及转换电路都在芯片内了。(上拉电阻
6.测温结果直接是数字量输出,单总线串行传送方式,同时可传送CRC校验码(校验数据采集是否正确),具有极强的抗干扰和纠错能力。
7.在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字。
8.负压特性:电源极性接反时,芯片不会因发热而烧毁, 但不能正常工作。

封装形式与引脚说明

在这里插入图片描述

供电方式(外部电源供电、寄生电源供电、寄生电源强上拉)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

内部结构

DS18B20内部结构如图所示,其中与操作有关的是:64位光刻ROM、温度传感器、9个字节的RAM存储器、EEPROM(温度报警寄存器TH和TL、配置寄存器)。
在这里插入图片描述
光刻ROM中64位序列号是出厂前就光刻好的,相当地址序列号。排列是低位开始,低8位(产品类型标号),接着48位(自身序列号,)相当于身份证号、最高8位(前面56位的循环亢余校验码)。
如果一条总线挂接多个DS18B20需要MCU(微控制器)通过单总线对多个DS18B20进行寻址。
在这里插入图片描述

在这里插入图片描述

温度存储格式及配置寄存器(模式和分辨率)

DS18B20温度传感器进行测温,测温是以16位的二进制形式提供。
存放格式:
在这里插入图片描述
16位中 低4位是温度的小数部分、最高5位是温度的正负(全为0为正,全为1为负),中间的7位则是温度的整数部分。小数部分十进制等于16进制乘0.0625。

例子:
在这里插入图片描述
注意:如果是负数温度,那么得按位取反+1。
比如数据为 1111 1100 1001 0000
首先低4位都为0.所以温度小数部分为0。最高5位为1,所以温度是负数,所以我们得按位取反才是正确的数, 温度的整数部分为 100 1001——>按位取反得:011 0110 再+1 则结果是 011 0111 ——>0x37(16进制)——>55℃(十进制)

配置寄存器

TM R1 R0 1 1 1 1 1

TM:测试模式位,用于设置是在工作方式还是测试模式。在DS18B20出厂时该位设为0,用户不要改动。
R1 R0:分辨率设置

R1 R0 分辨率/位 温度最大转向时间/ms
0 0 9 93.75
0 1 10 187.5
1 0 11 375
1 1 12 750

DS18B20指令(ROM指令操作)

序号 指令 代码 说明
1 读取ROM 33H 读DS18B20的64位序列号(只能适用于总线上只有一个DS18B20)
2 符合 ROM 55H 匹配指令,发出64位ROM编码,与总线上一个或多个DS18B20匹配,完全对应则响应。(单个或多个均可)
3 跳过 ROM CCH 忽略64位ROM地址,直接向DS18B20发温度变换指令,适用于单片机工作。(适用于单个DS18B20)。
4 搜索 ROM F0H 用于确定挂接在总线上DS18B20个数和 识别64位ROM地址(一般用于多个DS18B20)。
5 报警搜索命令 ECH 执行后搜索温度超过设定值上限或下限才做出响应。
6 写暂存器 4EH 在该写暂存器指令后向DS18B20的暂存器TH.TL以及配置寄存器中写入数据。
7 读暂存器 BEH 发送该指令后DS18B20将从一个字节开始,依次送出9个字节的内容。如果不想读完所有字节。控制器可以在任何时间发出复位指令中止读取或直接不读取。
8 复制暂存器 48H 将TH.TL和配置寄存器的内容拷贝到EEPROM中,如果使用寄生电源,总线控制器必须在这条指令发出后10us内启动强上拉并保持至少10ms时间。
9 启动温度转换指令 44H 温度转换完成后存放在第1个和第2个字节中,如果是寄生电源,总线必须在发出这条指令后的10us内启动强上拉。
10 复制EEPROM指令 B8H 把TH.TL和配置寄存器的值拷贝回暂存器。这种拷贝操作在DS18B20上电时自动执行,上电后,暂存器里就存了有效数据。
11 读供电方式指令 B4H 发给DS18B20后,再发出读时间间隙,后返回电源模式:0为寄生电源、1为外部电源。

注:每个指令在写都是 低位在前 高位在后 DS18B20发送也是先发低位,再发高位。
比如发送跳过ROM指令(CCH) 二进制位:1100 1100 。发送顺序为
0、0 、1、1、 0、 0、 1、 1 。

指令的使用

多个DS18B20情况: 对某一个操作时,主机先逐个与DS18B20挂接-搜索ROM——(F0H),发出匹配ROM指令(55H),紧接着提供64位序列号,之后操作就是针对DS18B20的了。

单个DS18B20情况: 不需要搜索ROM指令,读ROM指令以及匹配ROM等操作,直接跳过ROM指令(CCH),温度转换(44H),读温度操作(8EH)。

注意事项

一、 DS18B20硬件是简单,但软件就比较复杂,特别是时序要求。
二、 连接DS18B20线长限制:部分资料显示:
采用普通信号电缆传输超50m时,测温数据不稳定。
采用带屏蔽层双绞线电缆,正常通讯距离可达到150m。
采用每米绞合次数更多的带屏蔽层双绞线电缆时,通讯距离进一步加长。
三、 距离长了测温要考虑总线分布电容和阻抗匹配问题。
在测温程序设计中,一般如果硬件没什么问题,可以采用延时来跳过检测,但是如果要检测是否有应答要注意不要进入了死循环。

时序图

初始化

在这里插入图片描述

/*DS18B20初始化函数*/
void initDs18b20()
{
	DS18B20 = 1;
	delay20us();
	DS18B20 = 0;   //拉低电平 
	delay480us();  //480us-960us之间均可
	DS18B20 = 1;   //拉高电平
	delay50us();   //等待15us-60us
	if(DS18B20 == 1) //如果未响应
	{
		ds18b20Flag = 1; //DS18B20未响应 标志位置1
	}
	delay240us();	
}

写时序(写0或1)

在这里插入图片描述

/*DS18B20写命令函数*/
void ds18b20WriteData(unsigned char com)
{
	unsigned char i;
	for(i=0;i<8;i++)
	{
		DS18B20 = 0; //拉低电平
		//延时至少1us
		DS18B20 = com&0x01;
		delay60us(); //至少60us直到周期结束
		DS18B20 = 1;
		com = com>>1; //右移一位
	}		
}

读时序(读0或1)

在这里插入图片描述

/*DS18B20读数据函数*/
unsigned char ds18b20ReadData()
{
	unsigned char i;
	unsigned char dat = 0; //接收数据

	for(i=0;i<8;i++)
	{
		DS18B20 = 0;  //拉低电平至少1us
		dat=dat>>1;	  //右移一位
		DS18B20 = 1; //释放总线
		if(DS18B20 == 1) //如果是1
		{
			dat = dat|0x80;
		}
		delay45us(); //保持45us
		DS18B20 = 1; //释放总线
	}
	return dat;
}

程序代码

每一次进行写ROM相关命令都记得初始化。
对于单个DS18B20我们可以直接跳过ROM指令 直接温度转换。读取温度

步骤:
1.初始化
2.跳过ROM指令
3.启动温度转换(需要时间)
4.延时(等待温度转换)
5.初始化 (记得每写ROM相关命令记得需要从初始化开始)
6.读取温度
7.显示温度

LCD1602显示温度

main.c(主函数)

#include <reg52.h>
#include "delay.h"
#include "lcd1602.h"

sbit DS18B20 = P3^7; //DS18B20引脚
unsigned char ds18b20Flag; //DS18B20是否响应标志位
unsigned char temperature[2] = {'\0'}; //存放温度整数和小数
unsigned char code array[14] = {"DS18B20 error!"};
unsigned char code array1[5] = {"Temp:"};

/*DS18B20初始化函数*/
void initDs18b20()
{
	DS18B20 = 1;
	delay20us();
	DS18B20 = 0;   //拉低电平 
	delay480us();  //480us-960us之间均可
	DS18B20 = 1;   //拉高电平
	delay50us();   //等待15us-60us
	if(DS18B20 == 1) //如果未响应
	{
		ds18b20Flag = 1; //DS18B20未响应 标志位置1
	}
	delay240us();	
}

	
/*DS18B20写命令函数*/
void ds18b20WriteData(unsigned char com)
{
	unsigned char i;
	for(i=0;i<8;i++)
	{
		DS18B20 = 0; //拉低电平
		//延时至少1us
		DS18B20 = com&0x01;
		delay60us();
		DS18B20 = 1;
		com = com>>1;
	}		
}

/*DS18B20读数据函数*/
unsigned char ds18b20ReadData()
{
	unsigned char i;
	unsigned char dat = 0; //接收数据

	for(i=0;i<8;i++)
	{
		DS18B20 = 0;  //拉低电平至少1us
		dat=dat>>1;	  //右移一位
		DS18B20 = 1; //释放总线
		if(DS18B20 == 1)
		{
			dat = dat|0x80;
		}
		delay45us(); //保持45us
		DS18B20 = 1; //释放总线
	}
	return dat;
}

/*读取温度函数*/
void readTemperature()
{
	unsigned char temperatureLow;  //温度低字节
	unsigned char temperatureHigh; //温度高字节
	unsigned char tempFlag = 0; //温度正负标志位
	unsigned char disposeValue; //处理值
	

	initDs18b20();	//初始化DS18B20
	ds18b20WriteData(0xcc); //跳过ROM
	ds18b20WriteData(0x44); //启动温度转换指令
	//延时一段时间
	delay800ms();
	
	initDs18b20(); //每一次写命令都需要初始化
	ds18b20WriteData(0xcc); //跳过ROM
	ds18b20WriteData(0xbe); //读暂存器内容
	
	temperatureLow = ds18b20ReadData();	 //获取温度的第一个字节
	temperatureHigh = ds18b20ReadData(); //获取温度的第二个字节
	
	disposeValue = (temperatureHigh<<4)|(temperatureLow>>4);  //获取温度整数部分
	if(disposeValue>=128)  //温度是负数
	{
		disposeValue = ~disposeValue+1;
		tempFlag = 1;
	}
	temperature[0] = disposeValue; //温度整数
	temperature[1] = temperatureLow & 0x0f; //温度小数 
		
}

void displayTemperature()
{
	write_com(0x85);
	write_data((temperature[0]/100) + 0x30); //温度百位
	write_com(0x86);
	write_data((temperature[0]/10%10) + 0x30); //温度十位
	write_com(0x87);
	write_data((temperature[0]%10) + 0x30);   //温度个位

	write_com(0x88);
	write_data('.');

	write_com(0x89);
	write_data((temperature[1]*10/16) + 0x30);	//小数第一位
//	write_data((tempterature[1]*625/1000));
	write_com(0x8a);
	write_data((temperature[1]*100/16%10) + 0x30);	//小数第二位
//	write_data((tempterature[1]*625/100%10));

	/* 显示 ℃ */
	write_com(0x8b);
	write_data(0xdf);
	write_com(0x8c); 
	write_data('C');
}


void main()
{
	unsigned char i;

	init_lcd(); //初始化1602
	write_com(0x80);
	for(i=0;i<5;i++)
	{
		write_data(array1[i]);
	}
	while(1)
	{
		readTemperature();	  //读取温度
			
		if(ds18b20Flag == 1)  //如果初始化错误
		{
			for(i=0;i<14;i++)
			{
				write_com(0x80);
				write_data(array[i]);	//显示DS18B20 error!
			}
		}
		else
		{
			displayTemperature(); //温度显示
		}
				
	}
}

项目展示

在这里插入图片描述

如果觉得这篇文章对你有用。欢迎大家点赞、评论哈哈
需要整个工程代码,欢迎大家打赏,评论区留上你的邮箱 或者+我Q:844797079 or vx or qq。o( ̄︶ ̄)o
在这里插入图片描述

继续加油!!!

版权声明:本文为CSDN博主「皮卡丘吉尔」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_47457689/article/details/113941591

生成海报
点赞 0

皮卡丘吉尔

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

基于51单片机+DHT11温湿度+LCD1602显示

DHT11温湿度相关介绍 DHT11产品概述 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传 感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高 的可靠性与卓越的长期稳定性。传感器包括一

基于51单片机+DHT11温湿度+LCD1602显示

DHT11温湿度相关介绍 DHT11产品概述 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传 感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高 的可靠性与卓越的长期稳定性。传感器包括一

STM32 C++编程系列一:STM32 C++编程介绍

一、STM32及其他单片机开发现状 在目前绝大部分的单片机开发当中,C语言占据着主流的地位,但由于C语言本身是一种面向过程的语言,因此在当前利用面向对象思想构建可复用代码为主流的今天显得比较麻烦&#x