GD32F103配置SPI+DMA收发数据

  GD32是国产的32位单片机,它和STM32非常非常像,就连以前的库函数都差不多(现在从GD官网下载的库函数换了一种风格)。配置SPI和DMA的方法和STM32差不多。

DMA0各通道请求表  上图是DMA0各通道请求表,SPI0的收发分别用了通道1和通道2,我们就配置SPI0。

配置SPI0(或者说SPI1,GD的命名顺序让人闹心)

#define SPI1_CS_HIGH() (GPIOA->BOR = GPIO_PIN_4)
#define SPI1_CS_LOW()  (GPIOA->BCR = GPIO_PIN_4)
void SPI1Init(void)
{
	GPIO_InitPara GPIO_InitStructure;
	SPI_InitPara SPI_InitStructure;
	
	rcu_periph_clock_enable(RCU_GPIOA);
	rcu_periph_clock_enable(RCU_SPI0);
	//GD32的外设命名顺序很烦人,它的手册上都是从0开始数的,到了代码里,使能时钟这里是从0数,到后面又是从1数了
	/* SPI1_SCK(PA5), SPI1_MISO(PA6) and SPI1_MOSI(PA7) GPIO pin configuration */
	GPIO_InitStructure.GPIO_Pin = GPIO_PIN_5 | GPIO_PIN_7;
	GPIO_InitStructure.GPIO_Mode = GPIO_MODE_AF_PP;
	GPIO_InitStructure.GPIO_Speed = GPIO_SPEED_50MHZ;
	GPIO_Init(GPIOA, &GPIO_InitStructure);	
	GPIO_InitStructure.GPIO_Pin = GPIO_PIN_6;
	GPIO_InitStructure.GPIO_Mode = GPIO_MODE_IN_FLOATING;
	GPIO_Init(GPIOA, &GPIO_InitStructure);	
	/* SPI1_CS(PA4) GPIO pin configuration */
	GPIO_InitStructure.GPIO_Pin = GPIO_PIN_4;
	GPIO_InitStructure.GPIO_Mode = GPIO_MODE_OUT_PP;
	GPIO_Init(GPIOA, &GPIO_InitStructure);	
	/* chip select invalid*/
	SPI1_CS_HIGH();
	/* SPI1 parameter config */
	SPI_InitStructure.SPI_TransType = SPI_TRANSTYPE_FULLDUPLEX;
	SPI_InitStructure.SPI_Mode = SPI_MODE_MASTER;
	SPI_InitStructure.SPI_FrameFormat = SPI_FRAMEFORMAT_8BIT;
	SPI_InitStructure.SPI_SCKPL = SPI_SCKPL_LOW;
	SPI_InitStructure.SPI_SCKPH = SPI_SCKPH_1EDGE;
	SPI_InitStructure.SPI_SWNSSEN = SPI_SWNSS_SOFT;
	SPI_InitStructure.SPI_PSC = SPI_PSC_4;
	SPI_InitStructure.SPI_FirstBit = SPI_FIRSTBIT_MSB;
	SPI_InitStructure.SPI_CRCPOL = 7;
	SPI_Init(SPI1, &SPI_InitStructure);//这里变成的SPI1了,没有SPI0
	/* enable SPI1 */
	SPI_Enable(SPI1, ENABLE);
}

unsigned char SPI1ReadWriteByte(unsigned char byte)
{
	/* loop while data register in not emplty */
	while (RESET == SPI_I2S_GetBitState(SPI1,SPI_FLAG_TBE));
	/* send byte through the SPI0 peripheral */
	SPI1->DTR = byte;
	/* wait to receive a byte */
	while(RESET == SPI_I2S_GetBitState(SPI1,SPI_FLAG_RBNE));
	/* return the byte read from the SPI bus */
	return (SPI1->DTR);
}

配置DMA0

void SPI1DMAInit(void)	//DMA0 (count from 0) Channel3 (count from 1)
{
	DMA_InitPara DMA_InitStructure;
//	NVIC_InitPara NVIC_InitParaStruct;	//没用上中断
	
	rcu_periph_clock_enable(RCU_DMA0);
	//Tx_DMA
	DMA_DeInit(DMA1_CHANNEL3);	
	DMA_InitStructure.DMA_PeripheralBaseAddr = (unsigned int)&(SPI1->DTR);
	DMA_InitStructure.DMA_MemoryBaseAddr = 0;	//内存地址待定,启动传输时配置
	DMA_InitStructure.DMA_DIR = DMA_DIR_PERIPHERALDST;
	DMA_InitStructure.DMA_BufferSize = 0;
	DMA_InitStructure.DMA_PeripheralInc = DMA_PERIPHERALINC_DISABLE;
	DMA_InitStructure.DMA_MemoryInc = DMA_MEMORYINC_ENABLE;	//收发通道都配成内存地址递增就行
	DMA_InitStructure.DMA_PeripheralDataSize = DMA_PERIPHERALDATASIZE_BYTE;
	DMA_InitStructure.DMA_MemoryDataSize = DMA_MEMORYDATASIZE_BYTE;
	DMA_InitStructure.DMA_Mode = DMA_MODE_NORMAL;
	DMA_InitStructure.DMA_Priority = DMA_PRIORITY_MEDIUM;
	DMA_InitStructure.DMA_MTOM = DMA_MEMTOMEM_DISABLE;
	
//	NVIC_InitParaStruct.NVIC_IRQ = DMA1_Channel3_IRQn;
//	NVIC_InitParaStruct.NVIC_IRQPreemptPriority = 0;
//	NVIC_InitParaStruct.NVIC_IRQSubPriority = 2;
//	NVIC_InitParaStruct.NVIC_IRQEnable = ENABLE;
//	NVIC_Init(&NVIC_InitParaStruct);
//	NVIC_EnableIRQ(DMA1_Channel3_IRQn);
	
	DMA_Init(DMA1_CHANNEL3, &DMA_InitStructure);
	DMA_ClearIntBitState(DMA1_INT_TC3);
	//DMA_INTConfig(DMA1_CHANNEL3, DMA_INT_TC, ENABLE);
	
	//Rx_DMA
	DMA_DeInit(DMA1_CHANNEL2);
	DMA_InitStructure.DMA_DIR = DMA_DIR_PERIPHERALSRC;
	DMA_InitStructure.DMA_BufferSize = 0;
	DMA_InitStructure.DMA_MemoryInc = DMA_MEMORYINC_ENABLE;
	
//	NVIC_InitParaStruct.NVIC_IRQ = DMA1_Channel2_IRQn;
//	NVIC_InitParaStruct.NVIC_IRQPreemptPriority = 0;
//	NVIC_InitParaStruct.NVIC_IRQSubPriority = 2;
//	NVIC_InitParaStruct.NVIC_IRQEnable = ENABLE;
//	NVIC_Init(&NVIC_InitParaStruct);
//	NVIC_EnableIRQ(DMA1_Channel2_IRQn);
	
	DMA_Init(DMA1_CHANNEL2, &DMA_InitStructure);
	DMA_ClearIntBitState(DMA1_INT_TC2);
	//DMA_INTConfig(DMA1_CHANNEL2, DMA_INT_TC, ENABLE);
}

void SPI1TxDMAEnable(unsigned int mem_addr, unsigned int buf_size)
{
	//tx
	DMA_Enable(DMA1_CHANNEL3, DISABLE);
	while(DMA_GetCmdStatus(DMA1_CHANNEL3));
	DMA_SetCurrDataCounter(DMA1_CHANNEL3, buf_size);	//设置传输数据字节数
	DMA_MemoryTargetConfig(DMA1_CHANNEL3, mem_addr);	//设置内存地址
	SPI_I2S_DMA_Enable(SPI1, SPI_I2S_DMA_TX, ENABLE);
	//rx
	DMA_Enable(DMA1_CHANNEL2, DISABLE);
	while(DMA_GetCmdStatus(DMA1_CHANNEL2));
	DMA_SetCurrDataCounter(DMA1_CHANNEL2, buf_size);
	DMA_MemoryTargetConfig(DMA1_CHANNEL3, mem_addr);	//接收通道的内存地址和发送通道设置成一样的,之前的数据被覆盖前已经通过发送通道发出去了
	SPI_I2S_DMA_Enable(SPI1, SPI_I2S_DMA_RX, ENABLE);
	//enable
	DMA1_CHANNEL2->CTLR |= DMA_CTLR_CHEN;	//DMA Enable
	DMA1_CHANNEL3->CTLR |= DMA_CTLR_CHEN;	//DMA Enable
	while(!DMA_GetIntBitState(DMA1_INT_TC2));
	DMA_ClearIntBitState(DMA1_INT_TC2);
	while(!DMA_GetIntBitState(DMA1_INT_TC3));
	DMA_ClearIntBitState(DMA1_INT_TC3);
}

  上面代码中函数SPI1TxDMAEnable(unsigned int mem_addr, unsigned int buf_size)用来启动一次DMA传输,RX通道和TX通道的内存地址配成同一个就行,因为SPI的数据收发是在一个时钟控制下同时进行,内存的变量被读入的数据覆盖之前已经被发送出去了,不用担心内存数据被覆盖而发生错误。

版权声明:本文为CSDN博主「Chenxr32」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/QDchenxr/article/details/119813261

生成海报
点赞 0

Chenxr32

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

课程实习stm32主从蓝牙计算器+温度测量

说明:对于主从蓝牙计算器项目中的代码都是本人经过思考之后自行创作出来的,没有经过任何的网上抄录,由于课程实习的要求不高,所以我就没有对一些出现的bug进行修改(没有删除功能等

汽车级MCU大战“一触即发”

汽车行业,尤其是智能汽车赛道,不仅仅只有高算力SoC。数据显示,汽车微控制器(MCU)市场在过去的十年里占据所有行业MCU总销量的40%。 台积电在去年披露的数据吸纳是&#