DSP28335学习——系统初始化

近日工作中又涉及到了DSP28335的应用,看来TI的芯片还是得到了公司领导的认可,也直接丢了一份DSP28335的FOC程序给我理解。以前读书阶段较为简单的接触过一段时间,对DSP28335的基础功能部分有了一些浅显的了解,现在工作中要实际开始用了,开始发现之前学习的程度还是不够,因此要更加深入的探究一遍。可能非常基础,希望大家也不要见笑,人真是年龄越大忘东西越快。

系统初始化

首先从系统的初始化开始,系统初始化主要是系统时钟、看门狗等功能模块的基础配置,TI官方配置的系统初始化函数如下:

void InitSysCtrl(void)
{

   // Disable the watchdog
   DisableDog();

   // Initialize the PLL control: PLLCR and DIVSEL
   // DSP28_PLLCR and DSP28_DIVSEL are defined in DSP2833x_Examples.h
   InitPll(DSP28_PLLCR,DSP28_DIVSEL);

   // Initialize the peripheral clocks
   InitPeripheralClocks();
}

上面代码主要由3个子函数构成,分别为 DisableDog();、InitPll(DSP28_PLLCR,DSP28_DIVSEL);、 InitPeripheralClocks();这三个子函数的功能我们也来一一分析。

看门狗配置函数DisableDog()

首先是开门狗初始化函数DisableDog(),函数代码如下:

void DisableDog(void)
{
    EALLOW;
    SysCtrlRegs.WDCR= 0x0068;
    EDIS;
}

代码解释:

1、EALLOW /EDIS 打开/关闭状态寄存器保护EALLOW/EDIS 是DSP为了防止杂散代码或指针破坏关键寄存器的状态宏定义指令,关键寄存器包括ePWM、Flash、器件仿真寄存器、FLASH寄存器、CSM寄存器、PIE矢量表、系统控制寄存器、GPIOMux寄存器等,这些寄存器的状态决定DSP是否稳定运行,因此需要修改之前应用EALLOW打开保护,修改完后必须用EDIS关闭。

2、配置SysCtrlRegs.WDCR寄存器为0x0068。关闭看门狗,也可以戏称为把狗杀了,好残忍,看门狗的实际作用就是防止CPU跑飞或者其他故障导致系统出现不可挽回的故障,如果一段时间收不到CPU稳定运行的信号就会复位CPU,从而保证CPU的稳定性。打开WDCR寄存器表可知,寄存器后8位起到实际作用,0x0068 = 0110 1000 ,第7位置0看门狗不满足复位条件,第6位置1禁止看门狗模块,第5~3位写101强制写,第2~0位写000配置看门狗时钟。关键为第6位置1禁止看门狗模块。

锁相环初始化函数 InitPll(DSP28_PLLCR,DSP28_DIVSEL)

其次是锁相环初始化函数,在DSP中锁相环函数主要是用在时钟的分频上,将晶振产生的震荡进行分频和倍频操作,是整个芯片心脏——时钟能够起作用的关键之处,因此必须在程序开头对其进行配置。其代码如下:

void InitPll(Uint16 val, Uint16 divsel)
{

   // Make sure the PLL is not running in limp mode  确保PLL没有运行在故障状态
   if (SysCtrlRegs.PLLSTS.bit.MCLKSTS != 0)
   {
      // Missing external clock has been detected
      // Replace this line with a call to an appropriate
      // SystemShutdown(); function.
	   // 若检测到系统失去外部时钟,则关闭系统
      asm("        ESTOP0");
   }

   // DIVSEL MUST be 0 before PLLCR can be changed from 在PLLCR可以从更改前,DIVSEL必须为0
   // 0x0000. It is set to 0 by an external reset XRSn 通过外部重置XRSn将其设置为0
   // This puts us in 1/4
   if (SysCtrlRegs.PLLSTS.bit.DIVSEL != 0)
   {
       EALLOW;
       SysCtrlRegs.PLLSTS.bit.DIVSEL = 0;
       EDIS;
   }

   // Change the PLLCR  更改PLLCR
   if (SysCtrlRegs.PLLCR.bit.DIV != val)
   {

      EALLOW;
      // Before setting PLLCR turn off missing clock detect logic 在设置PLLCR之前,关闭缺失时钟检测逻辑
      SysCtrlRegs.PLLSTS.bit.MCLKOFF = 1;
      SysCtrlRegs.PLLCR.bit.DIV = val;
      EDIS;

      DisableDog();

      while(SysCtrlRegs.PLLSTS.bit.PLLLOCKS != 1)
      {
	      // Uncomment to service the watchdog
          // ServiceDog();
      }

      EALLOW;
      SysCtrlRegs.PLLSTS.bit.MCLKOFF = 0;
      EDIS;
    }

    // If switching to 1/2 如果切换至1/2
	if((divsel == 1)||(divsel == 2))
	{
		EALLOW;
	    SysCtrlRegs.PLLSTS.bit.DIVSEL = divsel;
	    EDIS;
	}

	// NOTE: ONLY USE THIS SETTING IF PLL IS BYPASSED (I.E. PLLCR = 0) OR OFF
	// If switching to 1/1  如果切换至 1/1 
	// * First go to 1/2 and let the power settle
	//   The time required will depend on the system, this is only an example
	// * Then switch to 1/1
	if(divsel == 3)
	{
		EALLOW;
	    SysCtrlRegs.PLLSTS.bit.DIVSEL = 2;
	    DELAY_US(50L);
	    SysCtrlRegs.PLLSTS.bit.DIVSEL = 3;
	    EDIS;
    }
}

void InitPll(Uint16 val, Uint16 divsel)
{

   // Make sure the PLL is not running in limp mode
   if (SysCtrlRegs.PLLSTS.bit.MCLKSTS != 0)
   {
      // Missing external clock has been detected
      // Replace this line with a call to an appropriate
      // SystemShutdown(); function.
      asm("        ESTOP0");
   }

   // DIVSEL MUST be 0 before PLLCR can be changed from
   // 0x0000. It is set to 0 by an external reset XRSn
   // This puts us in 1/4
   if (SysCtrlRegs.PLLSTS.bit.DIVSEL != 0)
   {
       EALLOW;
       SysCtrlRegs.PLLSTS.bit.DIVSEL = 0;
       EDIS;
   }

   // Change the PLLCR
   if (SysCtrlRegs.PLLCR.bit.DIV != val)
   {

      EALLOW;
      // Before setting PLLCR turn off missing clock detect logic
      SysCtrlRegs.PLLSTS.bit.MCLKOFF = 1;
      SysCtrlRegs.PLLCR.bit.DIV = val;
      EDIS;

      DisableDog();

      while(SysCtrlRegs.PLLSTS.bit.PLLLOCKS != 1)
      {
	      // Uncomment to service the watchdog
          // ServiceDog();
      }

      EALLOW;
      SysCtrlRegs.PLLSTS.bit.MCLKOFF = 0;
      EDIS;
    }

    // If switching to 1/2
	if((divsel == 1)||(divsel == 2))
	{
		EALLOW;
	    SysCtrlRegs.PLLSTS.bit.DIVSEL = divsel;
	    EDIS;
	}

	// NOTE: ONLY USE THIS SETTING IF PLL IS BYPASSED (I.E. PLLCR = 0) OR OFF
	// If switching to 1/1
	// * First go to 1/2 and let the power settle
	//   The time required will depend on the system, this is only an example
	// * Then switch to 1/1
	if(divsel == 3)
	{
		EALLOW;
	    SysCtrlRegs.PLLSTS.bit.DIVSEL = 2;
	    DELAY_US(50L);
	    SysCtrlRegs.PLLSTS.bit.DIVSEL = 3;
	    EDIS;
    }

代码解释:

1、if (SysCtrlRegs.PLLSTS.bit.MCLKSTS != 0),检测外部时钟是否存在,保证在外部时钟正常的情况下运行系统。

2、  if (SysCtrlRegs.PLLSTS.bit.DIVSEL != 0),如果8~7位不等于0,则强制置为0。

3、if (SysCtrlRegs.PLLCR.bit.DIV != val),如果锁相环控制寄存器PLLCR的3~0位不等于10实现10倍频,则使得锁相环状态寄存器MCLKOFF标志位为1,并强制置锁相环控制寄存器PLLCR的3~0位等于10。并且锁定锁相环,然后打开时钟丢失检测功能。

 4、if((divsel == 1)||(divsel == 2)) 与 if(divsel == 3) ,配置锁相环的分频。通过查询头文件可以看到这两个值。证明系统默认的倍频数位10倍频,系统默认的分频数为2分频。

由于目前的生产工艺,晶振频率为30Mhz的晶振性能更优,配置外部晶振为30Mhz成为主流,因此选择的倍频数为10,分频数为2,30*10/2 = 150 Mhz ,这也是DSP28335主频为150M的由来。

3、初始化外设时钟函数InitPeripheralClocks();

在进行了外部晶振的倍频和分频后,芯片就要将自己的动力分配给各个外设,驱动各个外设进行工作,这个动力的分配就是初始化外设时钟函数的作用,函数代码如下:

void InitPeripheralClocks(void)
{
   EALLOW;

// HISPCP/LOSPCP prescale register settings, normally it will be set to default values
   SysCtrlRegs.HISPCP.all = 0x0001;
   SysCtrlRegs.LOSPCP.all = 0x0002;

// XCLKOUT to SYSCLKOUT ratio.  By default XCLKOUT = 1/4 SYSCLKOUT
   // XTIMCLK = SYSCLKOUT/2
   XintfRegs.XINTCNF2.bit.XTIMCLK = 1;
   // XCLKOUT = XTIMCLK/2
   XintfRegs.XINTCNF2.bit.CLKMODE = 1;
   // Enable XCLKOUT
   XintfRegs.XINTCNF2.bit.CLKOFF = 0;

// Peripheral clock enables set for the selected peripherals.
// If you are not using a peripheral leave the clock off
// to save on power.
//
// Note: not all peripherals are available on all 2833x derivates.
// Refer to the datasheet for your particular device.
//
// This function is not written to be an example of efficient code.

   SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;    // ADC

   // *IMPORTANT*
   // The ADC_cal function, which  copies the ADC calibration values from TI reserved
   // OTP into the ADCREFSEL and ADCOFFTRIM registers, occurs automatically in the
   // Boot ROM. If the boot ROM code is bypassed during the debug process, the
   // following function MUST be called for the ADC to function according
   // to specification. The clocks to the ADC MUST be enabled before calling this
   // function.
   // See the device data manual and/or the ADC Reference
   // Manual for more information.

   ADC_cal();


   SysCtrlRegs.PCLKCR0.bit.I2CAENCLK = 1;   // I2C
   SysCtrlRegs.PCLKCR0.bit.SCIAENCLK = 1;   // SCI-A
   SysCtrlRegs.PCLKCR0.bit.SCIBENCLK = 1;   // SCI-B
   SysCtrlRegs.PCLKCR0.bit.SCICENCLK = 1;   // SCI-C
   SysCtrlRegs.PCLKCR0.bit.SPIAENCLK = 1;   // SPI-A
   SysCtrlRegs.PCLKCR0.bit.MCBSPAENCLK = 1; // McBSP-A
   SysCtrlRegs.PCLKCR0.bit.MCBSPBENCLK = 1; // McBSP-B
   SysCtrlRegs.PCLKCR0.bit.ECANAENCLK=1;    // eCAN-A
   SysCtrlRegs.PCLKCR0.bit.ECANBENCLK=1;    // eCAN-B

   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;   // Disable TBCLK within the ePWM
   SysCtrlRegs.PCLKCR1.bit.EPWM1ENCLK = 1;  // ePWM1
   SysCtrlRegs.PCLKCR1.bit.EPWM2ENCLK = 1;  // ePWM2
   SysCtrlRegs.PCLKCR1.bit.EPWM3ENCLK = 1;  // ePWM3
   SysCtrlRegs.PCLKCR1.bit.EPWM4ENCLK = 1;  // ePWM4
   SysCtrlRegs.PCLKCR1.bit.EPWM5ENCLK = 1;  // ePWM5
   SysCtrlRegs.PCLKCR1.bit.EPWM6ENCLK = 1;  // ePWM6
  // SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;   // Enable TBCLK within the ePWM

   SysCtrlRegs.PCLKCR1.bit.ECAP3ENCLK = 1;  // eCAP3
   SysCtrlRegs.PCLKCR1.bit.ECAP4ENCLK = 1;  // eCAP4
   SysCtrlRegs.PCLKCR1.bit.ECAP5ENCLK = 1;  // eCAP5
   SysCtrlRegs.PCLKCR1.bit.ECAP6ENCLK = 1;  // eCAP6
   SysCtrlRegs.PCLKCR1.bit.ECAP1ENCLK = 1;  // eCAP1
   SysCtrlRegs.PCLKCR1.bit.ECAP2ENCLK = 1;  // eCAP2
   SysCtrlRegs.PCLKCR1.bit.EQEP1ENCLK = 1;  // eQEP1
   SysCtrlRegs.PCLKCR1.bit.EQEP2ENCLK = 1;  // eQEP2

   SysCtrlRegs.PCLKCR3.bit.CPUTIMER0ENCLK = 1; // CPU Timer 0
   SysCtrlRegs.PCLKCR3.bit.CPUTIMER1ENCLK = 1; // CPU Timer 1
   SysCtrlRegs.PCLKCR3.bit.CPUTIMER2ENCLK = 1; // CPU Timer 2

   SysCtrlRegs.PCLKCR3.bit.DMAENCLK = 1;       // DMA Clock
   SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1;     // XTIMCLK
   SysCtrlRegs.PCLKCR3.bit.GPIOINENCLK = 1;    // GPIO input clock

   EDIS;
}

 代码解释:

1、SysCtrlRegs.HISPCP.all = 0x0001;  设置高速外设时钟分频 = sysclk / 2。


 2、SysCtrlRegs.LOSPCP.all = 0x0002;设置低速外设时钟低速外设时钟分频 = sysclk / 2,这里命名稍微有点出入,但是查询头文件后确实是这个功能。只不过换了一种方式表示。本来我以为我很细,但是发现是我很粗,错过前一句的命名风格,实际就是这么命名的。

3、XintfRegs.XINTCNF2.bit.XTIMCLK = 1;配置外部存储器的时钟为默认状态。

4、XintfRegs.XINTCNF2.bit.CLKMODE = 1;外设时钟频率控制位,并配置为默认。

5、SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1等; 外设时钟使能,这里的外设时钟控制寄存器PCLKCR0控制片上各种外设时钟的工作状态,使能或者禁止,也就是说这里控制着外设的各个时钟的关闭和开通。

小结:

通过这个系统初始化函数,我们能够得到几个关键的信息:

1、外部晶振为30Mhz,经过锁相环PLL的倍频和分频操作可以得到DSP28335的主频150Mhz。

2、在初始化函数中,能够选择打开或者关闭各个外设时钟,并且可以配置频率大小。

说实话,在梳理这个初始化程序的过程中,其实好多次想撤退,心里想着反正这些都是固定好的,也不会更改其中的参数,我为什么要花这么多时间去看这个呢,但是咬着牙看下来了。看完之后其实我觉得收获还是挺大的,特别是DSP的主频150Mhz是怎么来的这个点。说来惭愧,用了DSP好久,只知道主频是150Mhz,还真不知道是经过PLL分频又倍频来的,有不有用?我感觉其实还是有用的,我们对需要从事的工作有了更一份的了解,这就有用,也希望自己在日后的学习过程中,刨根究底,不偷懒不粗略,细不细?不够细啊!忍不忍得住,那必须忍得住啊。

版权声明:本文为CSDN博主「沉沙丶」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/sy243772901/article/details/120874353

生成海报
点赞 0

沉沙丶

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐

RT-Thread Studio移植LAN8720A驱动

RTT网络协议栈驱动移植(霸天虎) 1、新建工程 ​ 工程路径不含中文路径名,工程名用纯英文不含任何符号。 2、用CubeMx配置板子外设 2.1、配置时钟 ​ 按照自己板子配置相应时钟。

【STM32Cube笔记】12-配置外部中断

【STM32Cube笔记】系列文章目录 1-基于STM32的VSCode入门级教程前言 2-STM32Cube安装教程 3-STM32CubeIDE汉化 4-STM32Cube配置时钟设置 5-跑马灯引脚配置 6-Cortex-M7内核基本配

stm32cubemx+HAL+串口接收中断

stm32cubemxHAL串口接收中断 在cubemx配置完串口和global interrupt后需要在keil中添加如下代码。 第一步:在main函数中添加接收中断标志位开启函数 HAL_UART_Receive_IT