文章目录[隐藏]
近日工作中又涉及到了DSP28335的应用,看来TI的芯片还是得到了公司领导的认可,也直接丢了一份DSP28335的FOC程序给我理解。以前读书阶段较为简单的接触过一段时间,对DSP28335的基础功能部分有了一些浅显的了解,现在工作中要实际开始用了,开始发现之前学习的程度还是不够,因此要更加深入的探究一遍。可能非常基础,希望大家也不要见笑,人真是年龄越大忘东西越快。
系统初始化
首先从系统的初始化开始,系统初始化主要是系统时钟、看门狗等功能模块的基础配置,TI官方配置的系统初始化函数如下:
void InitSysCtrl(void)
{
// Disable the watchdog
DisableDog();
// Initialize the PLL control: PLLCR and DIVSEL
// DSP28_PLLCR and DSP28_DIVSEL are defined in DSP2833x_Examples.h
InitPll(DSP28_PLLCR,DSP28_DIVSEL);
// Initialize the peripheral clocks
InitPeripheralClocks();
}
上面代码主要由3个子函数构成,分别为 DisableDog();、InitPll(DSP28_PLLCR,DSP28_DIVSEL);、 InitPeripheralClocks();这三个子函数的功能我们也来一一分析。
看门狗配置函数DisableDog()
首先是开门狗初始化函数DisableDog(),函数代码如下:
void DisableDog(void)
{
EALLOW;
SysCtrlRegs.WDCR= 0x0068;
EDIS;
}
代码解释:
1、EALLOW /EDIS 打开/关闭状态寄存器保护。EALLOW/EDIS 是DSP为了防止杂散代码或指针破坏关键寄存器的状态宏定义指令,关键寄存器包括ePWM、Flash、器件仿真寄存器、FLASH寄存器、CSM寄存器、PIE矢量表、系统控制寄存器、GPIOMux寄存器等,这些寄存器的状态决定DSP是否稳定运行,因此需要修改之前应用EALLOW打开保护,修改完后必须用EDIS关闭。
2、配置SysCtrlRegs.WDCR寄存器为0x0068。关闭看门狗,也可以戏称为把狗杀了,好残忍,看门狗的实际作用就是防止CPU跑飞或者其他故障导致系统出现不可挽回的故障,如果一段时间收不到CPU稳定运行的信号就会复位CPU,从而保证CPU的稳定性。打开WDCR寄存器表可知,寄存器后8位起到实际作用,0x0068 = 0110 1000 ,第7位置0看门狗不满足复位条件,第6位置1禁止看门狗模块,第5~3位写101强制写,第2~0位写000配置看门狗时钟。关键为第6位置1禁止看门狗模块。
锁相环初始化函数 InitPll(DSP28_PLLCR,DSP28_DIVSEL)
其次是锁相环初始化函数,在DSP中锁相环函数主要是用在时钟的分频上,将晶振产生的震荡进行分频和倍频操作,是整个芯片心脏——时钟能够起作用的关键之处,因此必须在程序开头对其进行配置。其代码如下:
void InitPll(Uint16 val, Uint16 divsel)
{
// Make sure the PLL is not running in limp mode 确保PLL没有运行在故障状态
if (SysCtrlRegs.PLLSTS.bit.MCLKSTS != 0)
{
// Missing external clock has been detected
// Replace this line with a call to an appropriate
// SystemShutdown(); function.
// 若检测到系统失去外部时钟,则关闭系统
asm(" ESTOP0");
}
// DIVSEL MUST be 0 before PLLCR can be changed from 在PLLCR可以从更改前,DIVSEL必须为0
// 0x0000. It is set to 0 by an external reset XRSn 通过外部重置XRSn将其设置为0
// This puts us in 1/4
if (SysCtrlRegs.PLLSTS.bit.DIVSEL != 0)
{
EALLOW;
SysCtrlRegs.PLLSTS.bit.DIVSEL = 0;
EDIS;
}
// Change the PLLCR 更改PLLCR
if (SysCtrlRegs.PLLCR.bit.DIV != val)
{
EALLOW;
// Before setting PLLCR turn off missing clock detect logic 在设置PLLCR之前,关闭缺失时钟检测逻辑
SysCtrlRegs.PLLSTS.bit.MCLKOFF = 1;
SysCtrlRegs.PLLCR.bit.DIV = val;
EDIS;
DisableDog();
while(SysCtrlRegs.PLLSTS.bit.PLLLOCKS != 1)
{
// Uncomment to service the watchdog
// ServiceDog();
}
EALLOW;
SysCtrlRegs.PLLSTS.bit.MCLKOFF = 0;
EDIS;
}
// If switching to 1/2 如果切换至1/2
if((divsel == 1)||(divsel == 2))
{
EALLOW;
SysCtrlRegs.PLLSTS.bit.DIVSEL = divsel;
EDIS;
}
// NOTE: ONLY USE THIS SETTING IF PLL IS BYPASSED (I.E. PLLCR = 0) OR OFF
// If switching to 1/1 如果切换至 1/1
// * First go to 1/2 and let the power settle
// The time required will depend on the system, this is only an example
// * Then switch to 1/1
if(divsel == 3)
{
EALLOW;
SysCtrlRegs.PLLSTS.bit.DIVSEL = 2;
DELAY_US(50L);
SysCtrlRegs.PLLSTS.bit.DIVSEL = 3;
EDIS;
}
}
void InitPll(Uint16 val, Uint16 divsel)
{
// Make sure the PLL is not running in limp mode
if (SysCtrlRegs.PLLSTS.bit.MCLKSTS != 0)
{
// Missing external clock has been detected
// Replace this line with a call to an appropriate
// SystemShutdown(); function.
asm(" ESTOP0");
}
// DIVSEL MUST be 0 before PLLCR can be changed from
// 0x0000. It is set to 0 by an external reset XRSn
// This puts us in 1/4
if (SysCtrlRegs.PLLSTS.bit.DIVSEL != 0)
{
EALLOW;
SysCtrlRegs.PLLSTS.bit.DIVSEL = 0;
EDIS;
}
// Change the PLLCR
if (SysCtrlRegs.PLLCR.bit.DIV != val)
{
EALLOW;
// Before setting PLLCR turn off missing clock detect logic
SysCtrlRegs.PLLSTS.bit.MCLKOFF = 1;
SysCtrlRegs.PLLCR.bit.DIV = val;
EDIS;
DisableDog();
while(SysCtrlRegs.PLLSTS.bit.PLLLOCKS != 1)
{
// Uncomment to service the watchdog
// ServiceDog();
}
EALLOW;
SysCtrlRegs.PLLSTS.bit.MCLKOFF = 0;
EDIS;
}
// If switching to 1/2
if((divsel == 1)||(divsel == 2))
{
EALLOW;
SysCtrlRegs.PLLSTS.bit.DIVSEL = divsel;
EDIS;
}
// NOTE: ONLY USE THIS SETTING IF PLL IS BYPASSED (I.E. PLLCR = 0) OR OFF
// If switching to 1/1
// * First go to 1/2 and let the power settle
// The time required will depend on the system, this is only an example
// * Then switch to 1/1
if(divsel == 3)
{
EALLOW;
SysCtrlRegs.PLLSTS.bit.DIVSEL = 2;
DELAY_US(50L);
SysCtrlRegs.PLLSTS.bit.DIVSEL = 3;
EDIS;
}
代码解释:
1、if (SysCtrlRegs.PLLSTS.bit.MCLKSTS != 0),检测外部时钟是否存在,保证在外部时钟正常的情况下运行系统。
2、 if (SysCtrlRegs.PLLSTS.bit.DIVSEL != 0),如果8~7位不等于0,则强制置为0。
3、if (SysCtrlRegs.PLLCR.bit.DIV != val),如果锁相环控制寄存器PLLCR的3~0位不等于10实现10倍频,则使得锁相环状态寄存器MCLKOFF标志位为1,并强制置锁相环控制寄存器PLLCR的3~0位等于10。并且锁定锁相环,然后打开时钟丢失检测功能。
4、if((divsel == 1)||(divsel == 2)) 与 if(divsel == 3) ,配置锁相环的分频。通过查询头文件可以看到这两个值。证明系统默认的倍频数位10倍频,系统默认的分频数为2分频。
由于目前的生产工艺,晶振频率为30Mhz的晶振性能更优,配置外部晶振为30Mhz成为主流,因此选择的倍频数为10,分频数为2,30*10/2 = 150 Mhz ,这也是DSP28335主频为150M的由来。
3、初始化外设时钟函数InitPeripheralClocks();
在进行了外部晶振的倍频和分频后,芯片就要将自己的动力分配给各个外设,驱动各个外设进行工作,这个动力的分配就是初始化外设时钟函数的作用,函数代码如下:
void InitPeripheralClocks(void)
{
EALLOW;
// HISPCP/LOSPCP prescale register settings, normally it will be set to default values
SysCtrlRegs.HISPCP.all = 0x0001;
SysCtrlRegs.LOSPCP.all = 0x0002;
// XCLKOUT to SYSCLKOUT ratio. By default XCLKOUT = 1/4 SYSCLKOUT
// XTIMCLK = SYSCLKOUT/2
XintfRegs.XINTCNF2.bit.XTIMCLK = 1;
// XCLKOUT = XTIMCLK/2
XintfRegs.XINTCNF2.bit.CLKMODE = 1;
// Enable XCLKOUT
XintfRegs.XINTCNF2.bit.CLKOFF = 0;
// Peripheral clock enables set for the selected peripherals.
// If you are not using a peripheral leave the clock off
// to save on power.
//
// Note: not all peripherals are available on all 2833x derivates.
// Refer to the datasheet for your particular device.
//
// This function is not written to be an example of efficient code.
SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1; // ADC
// *IMPORTANT*
// The ADC_cal function, which copies the ADC calibration values from TI reserved
// OTP into the ADCREFSEL and ADCOFFTRIM registers, occurs automatically in the
// Boot ROM. If the boot ROM code is bypassed during the debug process, the
// following function MUST be called for the ADC to function according
// to specification. The clocks to the ADC MUST be enabled before calling this
// function.
// See the device data manual and/or the ADC Reference
// Manual for more information.
ADC_cal();
SysCtrlRegs.PCLKCR0.bit.I2CAENCLK = 1; // I2C
SysCtrlRegs.PCLKCR0.bit.SCIAENCLK = 1; // SCI-A
SysCtrlRegs.PCLKCR0.bit.SCIBENCLK = 1; // SCI-B
SysCtrlRegs.PCLKCR0.bit.SCICENCLK = 1; // SCI-C
SysCtrlRegs.PCLKCR0.bit.SPIAENCLK = 1; // SPI-A
SysCtrlRegs.PCLKCR0.bit.MCBSPAENCLK = 1; // McBSP-A
SysCtrlRegs.PCLKCR0.bit.MCBSPBENCLK = 1; // McBSP-B
SysCtrlRegs.PCLKCR0.bit.ECANAENCLK=1; // eCAN-A
SysCtrlRegs.PCLKCR0.bit.ECANBENCLK=1; // eCAN-B
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; // Disable TBCLK within the ePWM
SysCtrlRegs.PCLKCR1.bit.EPWM1ENCLK = 1; // ePWM1
SysCtrlRegs.PCLKCR1.bit.EPWM2ENCLK = 1; // ePWM2
SysCtrlRegs.PCLKCR1.bit.EPWM3ENCLK = 1; // ePWM3
SysCtrlRegs.PCLKCR1.bit.EPWM4ENCLK = 1; // ePWM4
SysCtrlRegs.PCLKCR1.bit.EPWM5ENCLK = 1; // ePWM5
SysCtrlRegs.PCLKCR1.bit.EPWM6ENCLK = 1; // ePWM6
// SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; // Enable TBCLK within the ePWM
SysCtrlRegs.PCLKCR1.bit.ECAP3ENCLK = 1; // eCAP3
SysCtrlRegs.PCLKCR1.bit.ECAP4ENCLK = 1; // eCAP4
SysCtrlRegs.PCLKCR1.bit.ECAP5ENCLK = 1; // eCAP5
SysCtrlRegs.PCLKCR1.bit.ECAP6ENCLK = 1; // eCAP6
SysCtrlRegs.PCLKCR1.bit.ECAP1ENCLK = 1; // eCAP1
SysCtrlRegs.PCLKCR1.bit.ECAP2ENCLK = 1; // eCAP2
SysCtrlRegs.PCLKCR1.bit.EQEP1ENCLK = 1; // eQEP1
SysCtrlRegs.PCLKCR1.bit.EQEP2ENCLK = 1; // eQEP2
SysCtrlRegs.PCLKCR3.bit.CPUTIMER0ENCLK = 1; // CPU Timer 0
SysCtrlRegs.PCLKCR3.bit.CPUTIMER1ENCLK = 1; // CPU Timer 1
SysCtrlRegs.PCLKCR3.bit.CPUTIMER2ENCLK = 1; // CPU Timer 2
SysCtrlRegs.PCLKCR3.bit.DMAENCLK = 1; // DMA Clock
SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1; // XTIMCLK
SysCtrlRegs.PCLKCR3.bit.GPIOINENCLK = 1; // GPIO input clock
EDIS;
}
代码解释:
1、SysCtrlRegs.HISPCP.all = 0x0001; 设置高速外设时钟分频 = sysclk / 2。
2、SysCtrlRegs.LOSPCP.all = 0x0002;设置低速外设时钟低速外设时钟分频 = sysclk / 2,这里命名稍微有点出入,但是查询头文件后确实是这个功能。只不过换了一种方式表示。本来我以为我很细,但是发现是我很粗,错过前一句的命名风格,实际就是这么命名的。
3、XintfRegs.XINTCNF2.bit.XTIMCLK = 1;配置外部存储器的时钟为默认状态。
4、XintfRegs.XINTCNF2.bit.CLKMODE = 1;外设时钟频率控制位,并配置为默认。
5、SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1等; 外设时钟使能,这里的外设时钟控制寄存器PCLKCR0控制片上各种外设时钟的工作状态,使能或者禁止,也就是说这里控制着外设的各个时钟的关闭和开通。
小结:
通过这个系统初始化函数,我们能够得到几个关键的信息:
1、外部晶振为30Mhz,经过锁相环PLL的倍频和分频操作可以得到DSP28335的主频150Mhz。
2、在初始化函数中,能够选择打开或者关闭各个外设时钟,并且可以配置频率大小。
说实话,在梳理这个初始化程序的过程中,其实好多次想撤退,心里想着反正这些都是固定好的,也不会更改其中的参数,我为什么要花这么多时间去看这个呢,但是咬着牙看下来了。看完之后其实我觉得收获还是挺大的,特别是DSP的主频150Mhz是怎么来的这个点。说来惭愧,用了DSP好久,只知道主频是150Mhz,还真不知道是经过PLL分频又倍频来的,有不有用?我感觉其实还是有用的,我们对需要从事的工作有了更一份的了解,这就有用,也希望自己在日后的学习过程中,刨根究底,不偷懒不粗略,细不细?不够细啊!忍不忍得住,那必须忍得住啊。
版权声明:本文为CSDN博主「沉沙丶」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/sy243772901/article/details/120874353
暂无评论