文章目录[隐藏]
第14章 I2C 总线与 EEPROM
I2C 总线是由 PHILIPS 公司开发的两线式串行总线,多用于连接微处理器及其外围芯片。I2C 总线的主要特点是接口方式简单,两条线可以挂多个参与通信的器件,即多机模式,而且任何一个器件都可以作为主机,当然同一时刻只能有一个主机。
从原理上来讲,UART 属于异步通信,比如电脑发送给单片机,电脑只负责把数据通过TXD 发送出来即可,接收数据是单片机自己的事情。而I2C 属于同步通信,SCL 时钟线负责收发双方的时钟节拍,SDA 数据线负责传输数据。I2C 的发送方和接收方都以 SCL 这个时钟节拍为基准进行数据的发送和接收。
从应用上来讲,UART 通信多用于板间通信,比如单片机和电脑,这个设备和另外一个设备之间的通信。而 I2C 多用于板内通信,比如单片机和我们本章要学的 EEPROM 之间的通信。
14.1 I2C 时序初步认识
在硬件上,I2C 总线是由时钟总线 SCL 和数据总线 SDA 两条线构成,连接到总线上的所有器件的 SCL 都连到一起,所有 SDA 都连到一起。I2C 总线是开漏引脚并联的结构,因此我们外部要添加上拉电阻。对于开漏电路外部加上拉电阻,就组成了线“与”的关系。总线上线“与”的关系就是说,所有接入的器件保持高电平,这条线才是高电平,而任何一个器件输出一个低电平,那这条线就会保持低电平,因此可以做到任何一个器件都可以拉低电平,也就是任何一个器件都可以作为主机,如图 14-1 所示,我们添加了 R63 和 R64 两个上拉电阻。
图 14-1
虽然说任何一个设备都可以作为主机,但绝大多数情况下我们都是用单片机来做主机,而总线上挂的多个器件,每一个都像电话机一样有自己唯一的地址,在信息传输的过程中,通过这唯一的地址就可以正常识别到属于自己的信息,在 KST-51 开发板上,就挂接了 2 个I2C 设备,一个是 24C02,一个是 PCF8591。
我们在学习 UART 串行通信的时候,知道了通信流程分为起始位、数据位、停止位这三部分,同理在 I2C 中也有起始信号、数据传输和停止信号,如图 14-2 所示。
图 14-2 I2C 时序流程图
从图上可以看出来,I2C 和 UART 时序流程有相似性,也有一定的区别。UART 每个字节中,都有一个起始位、8 个数据位、1 位停止位。而 I2C 分为起始信号、数据传输部分、停止信号。其中数据传输部分,可以一次通信过程传输很多个字节,字节数是不受限制的,而每个字节的数据最后也跟了一位,这一位叫做应答位,通常用 ACK 表示,有点类似于 UART的停止位。
下面我们一部分一部分的把 I2C 通信时序进行剖析。之前我们已经学过了 UART,所以学习 I2C 的过程我尽量拿 UART 来作为对比,这样有助于更好的理解。但是有一点大家要理解清楚,就是 UART 通信虽然用了 TXD 和 RXD 两根线,但是实际一次通信中,1 条线就可以完成,2 条线是把发送和接收分开而已,而 I2C 每次通信,不管是发送还是接收,必须 2条线都参与工作才能完成,为了更方便的看出来每一位的传输流程,我们把图 14-2 改进成图14-3。
图 14-3 I2C 通信流程解析
- UART 通信是从一直持续的高电平出现一个低电平标志起始位;而 I2C 通信的起始信号的定义是 SCL 为高电平期间,SDA 由高电平向低电平变化产生一个下降沿,表示起始信号,如图 14-3 中的 Start 部分所示。
-
- 首先,UART 是低位在前,高位在后;而 I2C 通信是高位在前,低位在后。
-
- 其次,UART 通信数据位是固定长度,波特率分之一,一位一位固定时间发送完毕就可以了。而 I2C 没有固定波特率,但是有时序的要求,要求当 SCL 在低电平的时候,SDA 允许变化,也就是说,发送方必须先保持 SCL 是低电平,才可以改变数据线 SDA,输出要发送的当前数据的一位;而当 SCL 在高电平的时候,SDA 绝对不可以变化,因为这个时候,接收方要来读取当前 SDA 的电平信号是 0 还是 1,因此要保证 SDA 的稳定,如图 14-3 中的每一位数据的变化,都是在 SCL 的低电平位置。8 位数据位后边跟着的是一位应答位,应答位我们后边还要具体介绍。
- UART 通信的停止位是一位固定的高电平信号;而 I2C 通信停止信号的定义是 SCL 为高电平期间,SDA 由低电平向高电平变化产生一个上升沿,表示结束信号,如图14-3 中的 Stop 部分所示。
起始信号:
数据传输:
停止信号:
时序图
14.2 I2C 寻址模式
上一节介绍的是 I2C 每一位信号的时序流程,而 I2C 通信在字节级的传输中,也有固定的时序要求。I2C 通信的起始信号(Start)后,首先要发送一个从机的地址,这个地址一共有 7位,紧跟着的第 8 位是数据方向位(R/W),“0”表示接下来要发送数据(写),‘“1”表示接下来是请求数据(读)。
我们知道,打电话的时候,当拨通电话,接听方捡起电话肯定要回一个“喂”,这就是告诉拨电话的人,这边有人了。同理,这个第九位 ACK 实际上起到的就是这样一个作用。
当我们发送完了这 7 位地址和 1 位方向后,如果发送的这个地址确实存在,那么这个地址的器件应该回应一个 ACK(拉低 SDA 即输出“0”),如果不存在,就没“人”回应 ACK(SDA将保持高电平即“1”)。
那我们写一个简单的程序,访问一下我们板子上的 EEPROM 的地址,另外再写一个不存在的地址,看看它们是否能回一个 ACK,来了解和确认一下这个问题。
我们板子上的EEPROM 器件型号是24C02,在24C02 的数据手册3.6 节中可查到,24C02的 7 位地址中,其中高 4 位是固定的 0b1010,而低 3 位的地址取决于具体电路的设计,由芯片上的 A2、A1、A0 这 3 个引脚的实际电平决定,来看一下我们的 24C02 的电路图,它和24C01 的原理图完全一样,如图 14-4 所示。
图 14-4 24C02 原理图
从图 14-4 可以看出来,我们的 A2、A1、A0 都是接的 GND,也就是说都是 0,因此 24C02的 7 位地址实际上是二进制的 0b1010000,也就是 0x50。我们用 I2C 的协议来寻址 0x50,另外再寻址一个不存在的地址 0x62,寻址完毕后,把返回的 ACK 显示到我们的 1602 液晶上,大家对比一下。
/Lcd1602.c 文件程序源代码/
#include <reg52.h>
#define LCD1602_DB P0
sbit LCD1602_RS = P1^0;
sbit LCD1602_RW = P1^1;
sbit LCD1602_E = P1^5;
/* 等待液晶准备好 */
void LcdWaitReady()
{
unsigned char sta;
LCD1602_DB = 0xFF;
LCD1602_RS = 0;
LCD1602_RW = 1;
do {
LCD1602_E = 1;
sta = LCD1602_DB; //读取状态字
LCD1602_E = 0;
} while (sta & 0x80); //bit7 等于 1 表示液晶正忙,重复检测直到其等于 0 为止
}
/* 向 LCD1602 液晶写入一字节命令,cmd-待写入命令值 */
void LcdWriteCmd(unsigned char cmd)
{
LcdWaitReady();
LCD1602_RS = 0;
LCD1602_RW = 0;
LCD1602_DB = cmd;
LCD1602_E = 1;
LCD1602_E = 0;
}
/* 向 LCD1602 液晶写入一字节数据,dat-待写入数据值 */
void LcdWriteDat(unsigned char dat)
{
LcdWaitReady();
LCD1602_RS = 1;
LCD1602_RW = 0;
LCD1602_DB = dat;
LCD1602_E = 1;
LCD1602_E = 0;
}
/* 设置显示 RAM 起始地址,亦即光标位置,(x,y)-对应屏幕上的字符坐标 */
void LcdSetCursor(unsigned char x, unsigned char y)
{
unsigned char addr;
if (y == 0) //由输入的屏幕坐标计算显示 RAM 的地址
addr = 0x00 + x; //第一行字符地址从 0x00 起始
else
addr = 0x40 + x; //第二行字符地址从 0x40 起始
LcdWriteCmd(addr | 0x80); //设置 RAM 地址
}
/* 在液晶上显示字符串,(x,y)-对应屏幕上的起始坐标,str-字符串指针 */
void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str)
{
LcdSetCursor(x, y); //设置起始地址
while (*str != '