C程序在 Ubuntu 和 STM32 中内存分区

C程序在 Ubuntu 和 STM32 中内存分区

1、内存分区简介

程序在内存的分区

在这里插入图片描述

内存存放顺序 (由上到下) : 栈区 -> 堆区 -> 全局区 -> 常量区 -> 代码区

栈区(stack
由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
堆区(heap
一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收 。它与数据结构中的堆不同,分配方式类似于链表。
全局区(静态区)(static)
全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量、未初始化的静态变量在相邻的另一块区域。当程序结束后,变量由系统释放 。
文字常量区
存放常量字符串。当程序结束后,常量字符串由系统释放 。
程序代码区
存放函数体的二进制代码。

存储区图解

在这里插入图片描述

2、Ubuntu 和 STM32 地址下输出验证实例

2、1 Ubuntu 下的输出验证

新建test文件,添加如下代码

#include <stdio.h>
#include <stdlib.h>
//定义全局变量
int init_global_a = 1;
int uninit_global_a;
static int inits_global_b = 2;
static int uninits_global_b;
void output(int a)
{
	printf("hello");
	printf("%d",a);
	printf("\n");
}

int main( )
{   
	//定义局部变量
	int a=2;
	static int inits_local_c=2, uninits_local_c;
    int init_local_d = 1;
    output(a);
    char *p;
    char str[10] = "lyy";
    //定义常量字符串
    char *var1 = "1234567890";
    char *var2 = "qwertyuiop";
    //动态分配
    int *p1=malloc(4);
    int *p2=malloc(4);
    //释放
    free(p1);
    free(p2);
    printf("栈区-变量地址\n");
    printf("                a:%p\n", &a);
    printf("                init_local_d:%p\n", &init_local_d);
    printf("                p:%p\n", &p);
    printf("              str:%p\n", str);
    printf("\n堆区-动态申请地址\n");
    printf("                   %p\n", p1);
    printf("                   %p\n", p2);
    printf("\n全局区-全局变量和静态变量\n");
    printf("\n.bss段\n");
    printf("全局外部无初值 uninit_global_a:%p\n", &uninit_global_a);
    printf("静态外部无初值 uninits_global_b:%p\n", &uninits_global_b);
    printf("静态内部无初值 uninits_local_c:%p\n", &uninits_local_c);
    printf("\n.data段\n");
    printf("全局外部有初值 init_global_a:%p\n", &init_global_a);
    printf("静态外部有初值 inits_global_b:%p\n", &inits_global_b);
    printf("静态内部有初值 inits_local_c:%p\n", &inits_local_c);
    printf("\n文字常量区\n");
    printf("文字常量地址     :%p\n",var1);
    printf("文字常量地址     :%p\n",var2);
    printf("\n代码区\n");
    printf("程序区地址       :%p\n",&main);
    printf("函数地址         :%p\n",&output);
    return 0;
}

编译执行,输出结果如下

在这里插入图片描述

Ubuntu 在栈区和堆区的地址值都是从低地址到高地址逐步增大

2、2 在STM32下的输出验证

创建工程

请参考我的博客https://blog.csdn.net/m0_56739646/article/details/121154145

修改代码

在 usart.h 文件中添加头文件代码

#include <stdio.h>
#include <stdlib.h>

在这里插入图片描述

在 usart.c 文件中重写 fputc 函数

extern UART_HandleTypeDef huart1;
uint8_t ch;
uint8_t ch_r;
//重写这个函数,重定向printf函数到串口,意思就是说printf直接输出到串口,其默认输出到控制台的
/*fputc*/
int fputc(int c, FILE * f)
{
    ch=c;
    HAL_UART_Transmit(&huart1,&ch,1,1000);//发送串口
    return c;
}

main.c 文件添加下面的代码:

#include <stdio.h>
#include <stdlib.h>
//定义全局变量
int init_global_a = 1;
int uninit_global_a;
static int inits_global_b = 2;
static int uninits_global_b;
void output(int a)
{
	printf("hello");
	printf("%d",a);
	printf("\n");
}

int main( )
{   
	//定义局部变量
	int a=2;
	static int inits_local_c=2, uninits_local_c;
    int init_local_d = 1;
    output(a);
    char *p;
    char str[10] = "lyy";
    //定义常量字符串
    char *var1 = "1234567890";
    char *var2 = "qwertyuiop";
    //动态分配
    int *p1=malloc(4);
    int *p2=malloc(4);
    //释放
    free(p1);
    free(p2);
    printf("栈区-变量地址\n");
    printf("                a:%p\n", &a);
    printf("                init_local_d:%p\n", &init_local_d);
    printf("                p:%p\n", &p);
    printf("              str:%p\n", str);
    printf("\n堆区-动态申请地址\n");
    printf("                   %p\n", p1);
    printf("                   %p\n", p2);
    printf("\n全局区-全局变量和静态变量\n");
    printf("\n.bss段\n");
    printf("全局外部无初值 uninit_global_a:%p\n", &uninit_global_a);
    printf("静态外部无初值 uninits_global_b:%p\n", &uninits_global_b);
    printf("静态内部无初值 uninits_local_c:%p\n", &uninits_local_c);
    printf("\n.data段\n");
    printf("全局外部有初值 init_global_a:%p\n", &init_global_a);
    printf("静态外部有初值 inits_global_b:%p\n", &inits_global_b);
    printf("静态内部有初值 inits_local_c:%p\n", &inits_local_c);
    printf("\n文字常量区\n");
    printf("文字常量地址     :%p\n",var1);
    printf("文字常量地址     :%p\n",var2);
    printf("\n代码区\n");
    printf("程序区地址       :%p\n",&main);
    printf("函数地址         :%p\n",&output);
    return 0;
}

编译执行,查看串口助手

在这里插入图片描述
STM32 在栈区和堆区的地址值都是从低地址到高地址逐步增大

3、总结

本次实验对程序内存分区进行了大致分析,了解了RAM、ROW、flash等介质。

版权声明:本文为CSDN博主「风霜叶」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_56739646/article/details/121964048

生成海报
点赞 0

风霜叶

我还没有学会写个人说明!

暂无评论

发表评论

相关推荐