PIC 单片机振荡电路中如何选择晶体

对于一个高可靠性的系统设计,晶体的选择非常重要,尤其设计带有睡眠唤醒,往往用低电压以求低功耗的系统,这是因为低供电电压使提供给晶体的激励功率减少,造成晶体起振很慢或根本就不能起振,这一现象在上电复位时并不特别明显,原因时上电时电路有足够的扰动,很容易建立振荡,在睡眠唤醒时,电路的扰动要比上电时小得多,起振变得很不容易,在振荡回路中,晶体既不能过激励,容易振到高次谐波上,也不能欠激励
不容易起振,晶体的选择至少必须考虑,谐振频点,负载电容,激励功率,温度特性长期稳定性

生成海报
点赞

单片机

单片机学习,电子制作DIY学习与分享,各种新鲜的,有趣的,好玩的,一起来吧!机器人、无人机、树莓派/Raspberry Pi、arduino、极客、创客等

暂无评论

发表评论

相关推荐

PIC 单片机应用中晶体选择的注意事项

对于一个高可靠性的系统设计,晶体的选择非常重要,在振荡回路中,晶体既不能过激励,容易振到高次谐波上,也不能欠激励,不容易起振),尤其在设计带有睡眠唤醒,往往用低电压以求低功耗 的系统中,若还是随手拿一颗晶体就用你的系统可能会出问题,这是因为低供电电压使提供给晶体的激励功率减少,造成晶体起振很慢或根本就不能起振这一现象在上电复位时并不特别明显,原因是上电时电路有足够的扰动,很容易建立振荡
评价振荡电路是否工作在最佳点的简单方法时用示波器看 OSC2 脚上的波形,必须考虑示波器接入电容 )最好的情形是看到非常干净漂亮的正弦波,没有任何波形畸变,而且要满幅,接近 VCC 和 GND,晶体的选择至少必须考虑,谐振频点,负载电容,激励功率温度特性,长期稳定性

如何判断电路中晶振是否被过分驱动

电阻RS常用来防止晶振被过分驱动,过分驱动晶振会渐渐损耗减少晶振的接触电镀,这将引起频率的上升 可用一台示波器检测,OSC输出脚,如果检测一非常清晰的正弦波且正弦波的上限值和下限值都符合时钟输入需要,则晶振未被过分驱动,相反,如果正弦波形的波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动,这时就需要用电阻RS来防止晶振被过分驱动 判断电阻RS值大小的最简单的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止,通过此办法就可以找到最接近的电阻RS值

用一个12M的晶振,怎么能实现480MB/S的数据传输率呢?

答:在集成了PLL的12MHz的晶体振荡器即可达到480MHz,相位锁定回(环)路(Phase Locked Loop,PLL)又被称为相锁回路或锁相回路,其原理是经由闭回路自动控制系统的反馈作用,驱使另一个动作不精准、频率变动量高的作用元件的动作频率,使其能快速且一直保持稳定地与正确的频率参考源达到同相甚至是同相又同频的状态,如此即是相位锁定(Phase Locked)的状态,我们若以电路外部精准、频率变动量极低的振荡频率源作为基准参考,来驱使电路内部精准、频率变动量极低的振荡频率源,使其达成相位锁定的状态,即可用来作为通讯系统的调变/解调电路。
一般480MB/S的数据传输率是运用在USB2。0,当通用序列汇流排(UniversalSerialBus)规格于1996年1月发表时,代表业界成功研发出一套连结中低速频宽的周边元件与个人电脑之间的低成本串连管道,但是仍缺乏支援高速宽频的应用能力。于2000年4月,USB再度推出全新一代的USB 2。0版本的技术规格,可将讯号传输速度提升整整40倍,由原先 USB 1。0的最高12MHz的速度至现今USB2。0的高速480MHz,并扩增了更先进的功能,如新型的传输装置以提高频宽使用率与增加传输装置及主机控制器之间的附加功能。
针对实际上可供使用的频宽来说,资料的传输频宽速度由原先的1Mbytes/sec左右提高至50Mbytes/sec,这样一个大幅度的频宽增加主要归功于USB 2。0规格运用了微讯框(micro-frame)、可容纳更多资讯的传输封包、更频繁的传输次数、分割式传输处理(split transaction)、以及一些新的执照(token)等崭新技术。USB 2。0装置的架构同时增加了两项全新的描述元(descriptor),即装置认
可(Device Qualifier)与其他的速度配置(Speed Configuration),可用来明确标示出资料传输装置在其它运作速度下的功能表现。
针对电子规格的变动:在主机与新型的高速控制器之间的连结则重新定义,以支援现今高达480MHz的传输效能表现。新的高速拓璞新的标准采用90W的差分阻抗(differential characteristic impedance)搭配差分电流模式讯号(differentialcurrentmodesignaling),并采用相同的NZRI编码机制(NZRIencoding),但对SYNC讯号(SYNC signaling)、EOP讯号(EOP signaling)与闲置状况(idle state)等略作更改,但也必须搭配其他相关规范,以便严格控制游离电容(straycapacitance)、点对点抖动(peak to peak jitter)与上升/下落时间(rise/fall time)等,使得讯号的传输速度能够更加快速。

微信扫一扫

微信扫一扫

微信扫一扫,分享到朋友圈

PIC 单片机振荡电路中如何选择晶体